Zobrazeno 1 - 10
of 59
pro vyhledávání: '"Maximenko, Egor A."'
We consider polynomials of the form $\operatorname{s}_\lambda(y_1^{[\varkappa_1]},\ldots,y_n^{[\varkappa_n]})$, where $\lambda$ is an integer partition, $\operatorname{s}_\lambda$ is the Schur polynomial associated to $\lambda$, and $y_j^{[\varkappa_
Externí odkaz:
http://arxiv.org/abs/2312.15680
Let $n,m\ge 1$ and $\alpha>0$. We denote by $\mathcal{F}_{\alpha,m}$ the $m$-analytic Bargmann--Segal--Fock space, i.e., the Hilbert space of all $m$-analytic functions defined on $\mathbb{C}^n$ and square integrables with respect to the Gaussian wei
Externí odkaz:
http://arxiv.org/abs/2309.03410
In a previous paper (Radial operators on polyanalytic weighted Bergman spaces, Bol. Soc. Mat. Mex. 27, 43), using disk polynomials as an orthonormal basis in the $n$-analytic weighted Bergman space, we showed that for every bounded radial generating
Externí odkaz:
http://arxiv.org/abs/2306.06231
In this paper we study the eigenvalues of the laplacian matrices of the cyclic graphs with one edge of weight $\alpha$ and the others of weight $1$. We denote by $n$ the order of the graph and suppose that $n$ tends to infinity. We notice that the ch
Externí odkaz:
http://arxiv.org/abs/2205.12457
Publikováno v:
In Linear Algebra and Its Applications 15 September 2024 697:249-276
Let $G$ be a locally compact abelian group with a Haar measure, and $Y$ be a measure space. Suppose that $H$ is a reproducing kernel Hilbert space of functions on $G\times Y$, such that $H$ is naturally embedded into $L^2(G\times Y)$ and is invariant
Externí odkaz:
http://arxiv.org/abs/2109.05879
We introduce a concept of approximately invertible elements in non-unital normed algebras which is, on one side, a natural generalization of invertibility when having approximate identities at hand, and, on the other side, it is a direct extension of
Externí odkaz:
http://arxiv.org/abs/2106.09103
Publikováno v:
Complex Analysis and Operator Theory, 2021, volume 15, article number: 99
We prove that the homogeneously polyanalytic functions of total order $m$, defined by the system of equations $\overline{D}^{(k_1,\ldots,k_n)} f=0$ with $k_1+\cdots+k_n=m$, can be written as polynomials of total degree $
Externí odkaz:
http://arxiv.org/abs/2102.01235
Publikováno v:
Bolet\'in de la Sociedad Matem\'atica Mexicana, 2021, volume 27, article number: 43
Let $\mu_\alpha$ be the Lebesgue plane measure on the unit disk with the radial weight $\frac{\alpha+1}{\pi}(1-|z|^2)^\alpha$. Denote by $\mathcal{A}^{2}_{n}$ the space of the $n$-analytic functions on the unit disk, square-integrable with respect to
Externí odkaz:
http://arxiv.org/abs/2009.14301
Publikováno v:
Karapetyants, A.N.; Kravchenko, V.V.; Liflyand, E.; Malonek, H.R. (eds) Operator Theory and Harmonic Analysis. OTHA 2020. Springer Proceedings in Mathematics & Statistics, vol 357. Springer, Cham
In this paper we study the eigenvalues of Hermitian Toeplitz matrices with the entries $2,-1,0,\ldots,0,-\alpha$ in the first column. Notice that the generating symbol depends on the order $n$ of the matrix. If $|\alpha|\le 1$, then the eigenvalues b
Externí odkaz:
http://arxiv.org/abs/2009.01401