Zobrazeno 1 - 10
of 13
pro vyhledávání: '"Maxime Laborde"'
Publikováno v:
Journal of Dynamics & Games. 7:79-96
Empirical evidence and theoretical results suggest that the proximal point method can be computed approximately and still converge faster than the corresponding gradient descent method, in both the stochastic and exact gradient case. In this article
Autor:
Narimane Gassa, Benjamin Sacristan, Nejib Zemzemi, Maxime Laborde, Juan Garrido Oliver, Clara Matencio Perabla, Guillermo Jimenez-Perez, Oscar Camara, Sylvain Ploux, Marc Strik, Pierre Bordachar, Remi Dubois
This is an abstrat submitted and accepted in the CinC conference 2021
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ae517089347564ab0e1773fd3777b73b
Autor:
Maxime Laborde
Publikováno v:
European Journal of Applied Mathematics. 31:450-469
In this paper, we introduce a dynamical urban planning model. This leads to the study of a system of nonlinear equations coupled through multi-marginal optimal transport problems. A first example consists in solving two equations coupled through the
Publikováno v:
Advances in Calculus of Variation
Advances in Calculus of Variation, Walter de Gruyter GmbH, 2020
Advances in Calculus of Variation, Walter de Gruyter GmbH, 2020
We study the Wasserstein distance between two measures μ , ν {\mu,\nu} which are mutually singular. In particular, we are interested in minimization problems of the form W ( μ , 𝒜 ) = inf { W ( μ , ν ) : ν ∈ 𝒜 } , W(\mu,\mat
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::25c414d045cdf466a692b17fa15ef62d
https://hal.archives-ouvertes.fr/hal-01552246/document
https://hal.archives-ouvertes.fr/hal-01552246/document
Autor:
Guillaume Carlier, Maxime Laborde
Publikováno v:
SIAM Journal on Mathematical Analysis
SIAM Journal on Mathematical Analysis, 2020, ⟨10.1137/19M1253800⟩
SIAM Journal on Mathematical Analysis, Society for Industrial and Applied Mathematics, 2020
SIAM Journal on Mathematical Analysis, 2020, ⟨10.1137/19M1253800⟩
SIAM Journal on Mathematical Analysis, Society for Industrial and Applied Mathematics, 2020
International audience; We develop an elementary and self-contained differential approach, in an L ∞ setting, for well-posedness (existence, uniqueness and smooth dependence with respect to the data) for the multi-marginal Schrödinger system which
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b6104c7f45cb9c5dd727f1b5774398ab
https://hal.science/hal-01918578v2/file/schrodinger-multi-marge.pdf
https://hal.science/hal-01918578v2/file/schrodinger-multi-marge.pdf
Autor:
Maxime Laborde
Publikováno v:
Applied Mathematics & Optimization. 81:989-1020
In this paper, we investigate the existence of solution for systems of Fokker-Planck equations coupled through a common nonlinear congestion. Two different kinds of congestion are considered: a porous media congestion or soft congestion and the hard
Autor:
Guillaume Carlier, Maxime Laborde
Publikováno v:
Nonlinear Analysis: Theory, Methods & Applications. 150:1-18
We prove an existence result for nonlinear diffusion equations in the presence of a nonlocal density-dependent drift which is not necessarily potential. The proof is constructive and based on the Helmholtz decomposition of the drift and a splitting s
Publikováno v:
ESAIM: Proceedings and Surveys
ESAIM: Proceedings and Surveys, 2019
ESAIM: Proceedings and Surveys, EDP Sciences, 2019
ESAIM: Proceedings and Surveys, Vol 54, Pp 1-17 (2016)
ESAIM: Proceedings and Surveys, 2019
ESAIM: Proceedings and Surveys, EDP Sciences, 2019
ESAIM: Proceedings and Surveys, Vol 54, Pp 1-17 (2016)
International audience; Taking advantage of the Benamou-Brenier dynamic formulation of optimal transport, we propose a convex formulation for each step of the JKO scheme for Wasserstein gradient flows which can be attacked by an augmented Lagrangian
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b1d6f92f3819e9407368253b0456586d
https://hal.science/hal-01245184/document
https://hal.science/hal-01245184/document
Autor:
Guillaume Carlier, Maxime Laborde
Publikováno v:
Journal of Mathematical Analysis and Applications. 444:1690-1702
This paper is devoted to existence and uniqueness results for some classes of nonlinear diffusion equations in the presence of a regular drift term. These equations may be viewed as regular perturbations of Wasserstein gradient flows but the drift te
Publikováno v:
European Journal of Applied Mathematics
European Journal of Applied Mathematics, 2019, 30 (6), pp.1123-1152. ⟨10.1017/S0956792518000633⟩
European Journal of Applied Mathematics, Cambridge University Press (CUP), 2019, 30 (6), pp.1123-1152. ⟨10.1017/S0956792518000633⟩
European Journal of Applied Mathematics, 2019, 30 (6), pp.1123-1152. ⟨10.1017/S0956792518000633⟩
European Journal of Applied Mathematics, Cambridge University Press (CUP), 2019, 30 (6), pp.1123-1152. ⟨10.1017/S0956792518000633⟩
The Wasserstein gradient flow structure of the partial differential equation system governing multiphase flows in porous media was recently highlighted in Cancès et al. [Anal. PDE10(8), 1845–1876]. The model can thus be approximated by means of th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::de66c3e06d8eeca839a489caf82d7e4a
http://arxiv.org/abs/1802.01321
http://arxiv.org/abs/1802.01321