Zobrazeno 1 - 10
of 4 310
pro vyhledávání: '"Maximal function"'
Autor:
Ooi, Keng Hao
Publikováno v:
AIMS Mathematics, Vol 9, Iss 7, Pp 19756-19770 (2024)
In this note, we investigate some new characterizations of the $p$-adic version of Lipschitz spaces via the boundedness of commutators of the $p$-adic maximal-type functions, including $p$-adic sharp maximal functions, $p$-adic fractional maximal fun
Externí odkaz:
https://doaj.org/article/0a5c0f412933400b847d598ac631bbac
Autor:
Maysam Maysami Sadr
Publikováno v:
AUT Journal of Mathematics and Computing, Vol 5, Iss 2, Pp 143-149 (2024)
For a real-valued function $f$ on a metric measure space $(X,d,\mu)$ the Hardy-Littlewood centered-ball maximal-function of $f$ is given by the `supremum-norm':$$Mf(x):=\sup_{r>0}\frac{1}{\mu(\mathcal{B}_{x,r})}\int_{\mathcal{B}_{x,r}}|f|d\mu.$$In th
Externí odkaz:
https://doaj.org/article/0562dced7e9d43fa889a56a34d187719
Autor:
Badriya Al-Azri, Ahmad Al-Salman
Publikováno v:
AIMS Mathematics, Vol 9, Iss 4, Pp 8386-8405 (2024)
We prove a weighted $ L^{p} $ boundedness of Marcinkiewicz integral operators along surfaces on product domains. For various classes of surfaces, we prove the boundedness of the corresponding operators on the weighted Lebsgue space $ L^{p}(\mathbb{R}
Externí odkaz:
https://doaj.org/article/dab84dffde75488fa13039b27f9399f6
Approximation by Schurer Type λ-Bernstein–Bézier Basis Function Enhanced by Shifted Knots Properties
Autor:
Abdullah Alotaibi
Publikováno v:
Mathematics, Vol 12, Iss 21, p 3310 (2024)
In this article, a novel Schurer form of λ-Bernstein operators augmented by Bézier basis functions is presented by utilizing the features of shifted knots. The shifted knots form of Bernstein operators and the Schurer form of the Bézier basis func
Externí odkaz:
https://doaj.org/article/0bdcabf9b6314d9db8cd3c3f66d87597
Autor:
Wu Jianglong, Chang Yunpeng
Publikováno v:
Open Mathematics, Vol 21, Iss 1, Pp 393-425 (2023)
In this article, the main aim is to consider the boundedness of the nonlinear commutator of pp-adic sharp maximal operator ℳp♯{{\mathcal{ {\mathcal M} }}}_{p}^{\sharp } with symbols belonging to the pp-adic Lipschitz spaces in the context of the
Externí odkaz:
https://doaj.org/article/6ee828b7c87e45aab105a60bd75feeab
Autor:
Erxin Zhang
Publikováno v:
Mathematics, Vol 12, Iss 18, p 2814 (2024)
Let Mg+f be the one-sided Hardy–Littlewood maximal function, φ1 be a nonnegative and nondecreasing function on [0,∞), γ be a positive and nondecreasing function defined on [0,∞); let φ2 be a quasi-convex function and u,v,w be three weight fu
Externí odkaz:
https://doaj.org/article/36fff091ca4548d5ab2afe1823dd0352