Zobrazeno 1 - 10
of 48
pro vyhledávání: '"Maxim Zinchenko"'
Autor:
Anna Skripka, Maxim Zinchenko
Publikováno v:
Studia Mathematica. 251:207-218
Publikováno v:
Toeplitz Operators and Random Matrices ISBN: 9783031138508
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::1dcc712ae0529dba26cc192d4fba2c06
https://doi.org/10.1007/978-3-031-13851-5_14
https://doi.org/10.1007/978-3-031-13851-5_14
Autor:
Anna Skripka, Maxim Zinchenko
Publikováno v:
Linear Algebra and its Applications. 582:218-236
We consider Taylor approximations of matrix functions and establish bounds controlling the size of a perturbation in terms of the size of the Taylor remainder or, equivalently, the associated spectral shift function(s). This can be viewed as a stabil
Publikováno v:
Journal d'Analyse Mathématique. 137:373-427
Given a complex, separable Hilbert space $$\mathcal{H}$$ , we consider differential expressions of the type τ = −(d2/dx2) $$I_\mathcal{H}$$ + V(x), with x ∈ (x0,∞) for some x0 ∈ ℝ, or x ∈ ℝ (assuming the limit-point property of τ at
Autor:
Klaus Schiefermayr, Maxim Zinchenko
Publikováno v:
Journal of Mathematical Analysis and Applications. 512:126131
This book provides a detailed treatment of the various facets of modern Sturm–Liouville theory, including such topics as Weyl–Titchmarsh theory, classical, renormalized, and perturbative oscillation theory, boundary data maps, traces and determin
Publikováno v:
Operator Theory: Advances and Applications ISBN: 9783030754242
Operator Theory: Advances and Applications
Operator Theory: Advances and Applications
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::9ce1dc9454682c9192f5f5d8124626ef
https://doi.org/10.1007/978-3-030-75425-9_18
https://doi.org/10.1007/978-3-030-75425-9_18
Autor:
Maxim Zinchenko, Fritz Gesztesy
Publikováno v:
Annals of Functional Analysis. 12
We revisit an archive submission by Denton et al. (Eigenvectors from eigenvalues: a survey of a basic identity in linear algebra. arXiv:1908.03795v3 [math.RA], 2019) on $$n \times n$$ self-adjoint matrices from the point of view of self-adjoint Diric
We make a number of comments on Chebyshev polynomials for general compact subsets of the complex plane. We focus on two aspects: asymptotics of the zeros and explicit Totik--Widom upper bounds on their norms.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0e6d0e6a7325bef9a71cc7a5bd551dc1
https://resolver.caltech.edu/CaltechAUTHORS:20190501-093308068
https://resolver.caltech.edu/CaltechAUTHORS:20190501-093308068
Publikováno v:
Analysis as a Tool in Mathematical Physics ISBN: 9783030315306
We determine which sets saturate the Szegő and Schiefermayr lower bounds on the norms of Chebyshev Polynomials. We also discuss sets that saturate our optimal Totik–Widom upper bound.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::30b8c328c1d588702772c4820bce1f59
https://resolver.caltech.edu/CaltechAUTHORS:20180807-111909106
https://resolver.caltech.edu/CaltechAUTHORS:20180807-111909106