Zobrazeno 1 - 3
of 3
pro vyhledávání: '"Max R. Mowbray"'
Publikováno v:
Mowbray, M R, Wu, C, Rogers, A W, Rio-Chanona, E A D & Zhang, D 2023, ' A reinforcement learning-based hybrid modeling framework for bioprocess kinetics identification ', Biotechnology and Bioengineering, vol. 120, no. 1, pp. 154-168 . https://doi.org/10.1002/bit.28262
Constructing predictive models to simulate complex bioprocess dynamics, particularly time-varying (i.e., parameters varying over time) and history-dependent (i.e., current kinetics dependent on historical culture conditions) behavior, has been a long
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::81c14da3a470052a8567632cc06f5f37
https://uom.elsevierpure.com/en/publications/137e6d55-792a-447b-94b9-c09484add6fa
https://uom.elsevierpure.com/en/publications/137e6d55-792a-447b-94b9-c09484add6fa
Autor:
Mowbray, Max R., Wu, Chufan, Rogers, Alexander W., Rio‐Chanona, Ehecatl A. Del, Zhang, Dongda
Publikováno v:
Biotechnology & Bioengineering; Jan2023, Vol. 120 Issue 1, p154-168, 15p
Over the last decade, there has been a significant shift from traditional mechanistic and empirical modelling into statistical and data-driven modelling for applications in reaction engineering. In particular, the integration of machine learning and