Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Mattia Piccinini"'
Publikováno v:
IEEE Open Journal of Intelligent Transportation Systems, Vol 5, Pp 642-655 (2024)
In the context of vehicle trajectory planning, motion primitives are trajectories connecting pairs of boundary conditions. In autonomous racing, motion primitives have been used as computationally faster alternatives to model predictive control, for
Externí odkaz:
https://doaj.org/article/076a0bab93824097a0144dcbe1924876
Publikováno v:
IEEE Access, Vol 11, Pp 124163-124180 (2023)
This paper presents a framework to plan and execute autonomous parking maneuvers in complex parking scenarios. We formulate a minimum-time optimal control problem for trajectory planning, using an indirect optimal control approach. A novel smooth pen
Externí odkaz:
https://doaj.org/article/d475bed8a47e4f98a0631f1d819a6488
Publikováno v:
IEEE Access, Vol 11, Pp 46344-46372 (2023)
This paper presents a hierarchical framework with novel analytical and neural physics-driven models, to enable the online planning and tracking of minimum-time maneuvers, for a vehicle with partially-unknown parameters. We introduce a lateral speed p
Externí odkaz:
https://doaj.org/article/a351a0266aa54ee6865c05901fe9560b
Publikováno v:
IROS
In this paper, we present a real-time non-linear model-predictive control (NMPC) framework to perform minimum-time motion planning for autonomous racing cars. We introduce an innovative kineto-dynamical vehicle model, able to accurately predict non-l