Zobrazeno 1 - 10
of 24
pro vyhledávání: '"Matthias Wastian"'
Publikováno v:
SNE Simulation Notes Europe. 32:1-8
Autor:
Matthias Wastian, Daniel Kapla
Publikováno v:
SNE Simulation Notes Europe. 30:1-6
Autor:
Sarah Frisch, Matthias Wastian, Dominic Weinberger, Matthias Rößler, Niki Popper, Martin Bicher, Anna Jellen, Philipp Hungerländer
Publikováno v:
WSC
The planning of traction unit circulations in a railway network is a very time-consuming task. In order to support the planning personnel, the paper proposes a combination of optimization, simulation and machine learning. This ensemble creates mathem
Autor:
Sergei B. Arseniev, Andrea Rappelsberger, Matthias Wastian, Julia Zeckl, Klaus-Peter Adlassnig, Dominik Brunmeir
Publikováno v:
Studies in Computational Intelligence ISBN: 9783030495350
Arden Syntax is an HL7 International standard for the representation and execution of clinical knowledge in knowledge-based clinical decision support (CDS) systems. The predictive model markup language (PMML) specifies a file format for the represent
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c2fb8330d85f41c851aa88661e8d286f
https://doi.org/10.1007/978-3-030-49536-7_9
https://doi.org/10.1007/978-3-030-49536-7_9
Autor:
Matthias Wastian, Stephan Reichl
Publikováno v:
SNE Simulation Notes Europe. 28:35-38
Publikováno v:
SNE Simulation Notes Europe. 29:45-47
Autor:
Matthias Wastian, Dominik Brunmeir
Publikováno v:
SNE Simulation Notes Europe. 27:209-212
Autor:
Andreas Fleischhacker, Lisa V. Eckerstorfer, Katja Corcoran, Barbara Glock, Gerald Schweiger, Matthias Rößler, Johannes Radl, Irene Hafner, Niki Popper, Matthias Wastian, Georg Lettner
Publikováno v:
Energy and Buildings. 227:110359
A pressing task for future energy systems is the design and operation of systems that integrate large shares of renewable energy while improving overall system efficiency. Because buildings consume about 32% of the total global final energy use, they
Publikováno v:
2018 UBT International Conference.
Autor:
Elena Rudkowsky, Michael Sedlmair, Marcelo Jenny, Martin Haselmayer, Stefan Emrich, Matthias Wastian
Moving beyond the dominant bag-of-words approach to sentiment analysis we introduce an alternative procedure based on distributed word embeddings. The strength of word embeddings is the ability to capture similarities in word meaning. We use word emb
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::df78039b244968fd41db8be3af41caaf
https://hdl.handle.net/11353/10.937153
https://hdl.handle.net/11353/10.937153