Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Matthias Kirchhart"'
Autor:
Matthias Kirchhart, Donat Weniger
Publikováno v:
Journal of Numerical Mathematics. 30:109-120
We present simplified formulae for the analytic integration of the Newton potential of polynomials over boxes in two- and three-dimensional space. These are implemented in an easy-to-use C++ library that allows computations in arbitrary precision ari
Autor:
Matthias Kirchhart, Christian Rieger
Publikováno v:
SIAM Journal on Scientific Computing. 43:A609-A635
We propose a simple tweak to a recently developed regularization scheme for particle methods. This allows us to choose the particle spacing $h$ proportional to the regularization length $\sigma$ an...
Autor:
Matthias Kirchhart
Publikováno v:
ESAIM: Mathematical Modelling and Numerical Analysis. 55:S301-S321
We propose numerical schemes that enable the application of particle methods for advection problems in general bounded domains. These schemes combine particle fields with Cartesian tensor product splines and a fictitious domain approach. Their implem
Autor:
R. Paul Wilhelm, Matthias Kirchhart
Publikováno v:
Journal of Computational Physics. 473:111720
In this paper we present a novel particle method for the Vlasov--Poisson equation. Unlike in conventional particle methods, the particles are not interpreted as point charges, but as point values of the distribution function. In between the particles
Autor:
Erick Schulz, Matthias Kirchhart
We consider the problem of recovering the divergence-free velocity field ${\mathbf U}\in\mathbf{L}^2(\Omega)$ of a given vorticity ${\mathbf F}=\mathrm{curl}\,{\mathbf U}$ on a bounded Lipschitz domain $\Omega\subset\mathbb{R}^3$. To that end, we sol
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1dd02e472cfa0dd4f10466dfc8368820
http://arxiv.org/abs/2005.11764
http://arxiv.org/abs/2005.11764
Publikováno v:
SIAM Journal on Scientific Computing. 38:A1019-A1043
We consider a stationary Stokes interface problem. In the discretization the interface is not aligned with the triangulation. For the discretization we use the $P_1$ extended finite element space ($P_1$-XFEM) for the pressure and the standard conform
Autor:
Shinnosuke Obi, Matthias Kirchhart
We present a new class of $C^\infty$-smooth finite element spaces on Cartesian grids, based on a partition of unity approach. We use these spaces to construct smooth approximations of particle fields, i.e., finite sums of weighted Dirac deltas. In or
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1b6f69e11442514b77e708f5ca352397
Autor:
Matthias Kirchhart, Shinnosuke Obi
We present a splitting-free variant of the vorticity redistribution method. Spatial consistency and stability when combined with a time-stepping scheme are proven. We propose a new strategy preventing excessive growth in the number of particles while
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2e0e373c852a2bde9fffd78f00210898
Autor:
Matthias Kirchhart
Publikováno v:
Matthias Kirchhart
We present solidfmm, a highly optimised C++ library for the solid harmonics as they are needed in fast multipole methods. The library provides efficient, vectorised implementations of the translation operations M2M, M2L, and L2L, and is available as
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b4bd5bb0d61248649109f88c7a8f2c42
https://arxiv.org/abs/2202.02847
https://arxiv.org/abs/2202.02847