Zobrazeno 1 - 10
of 57
pro vyhledávání: '"Matthias Bolten"'
Publikováno v:
Frontiers in Neuroinformatics, Vol 15 (2021)
Due to the point-like nature of neuronal spiking, efficient neural network simulators often employ event-based simulation schemes for synapses. Yet many types of synaptic plasticity rely on the membrane potential of the postsynaptic cell as a third f
Externí odkaz:
https://doaj.org/article/749e386d369145efa10692e0720f073f
Autor:
Jan Hahne, David Dahmen, Jannis Schuecker, Andreas Frommer, Matthias Bolten, Moritz Helias, Markus Diesmann
Publikováno v:
Frontiers in Neuroinformatics, Vol 11 (2017)
Contemporary modeling approaches to the dynamics of neural networks include two important classes of models: biologically grounded spiking neuron models and functionally inspired rate-based units. We present a unified simulation framework that suppor
Externí odkaz:
https://doaj.org/article/d227892c35ec4dc5b7ae1c69987065f0
Publikováno v:
Linear Algebra and its Applications. 671:67-108
Saddle point problems arise in a variety of applications, e.g., when solving the Stokes equations. They can be formulated such that the system matrix is symmetric, but indefinite, so the variational convergence theory that is usually used to prove mu
Publikováno v:
SIAM Journal on Matrix Analysis and Applications. 43:405-438
Publikováno v:
ACM Transactions on Mathematical Software. 47:1-22
In this article, we introduce the Python framework PyMGRIT, which implements the multigrid-reduction-in-time (MGRIT) algorithm for solving (non-)linear systems arising from the discretization of time-dependent problems. The MGRIT algorithm is a reduc
Publikováno v:
SIAM Journal on Control and Optimization. 59:3302-3328
We suggest a novel approach for the efficient and reliable approximation of the Pareto front of sufficiently smooth unconstrained biobjective optimization problems. Optimality conditions formulated...
Publikováno v:
International Conference on High Performance Computing in Asia-Pacific Region.
Publikováno v:
SSRN Electronic Journal
Publikováno v:
Computational Science – ICCS 2022 ISBN: 9783031087530
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::8dc6d498545233edb189a6ffa2fc19af
https://doi.org/10.1007/978-3-031-08754-7_29
https://doi.org/10.1007/978-3-031-08754-7_29
A powerful tool for analyzing and approximating the singular values and eigenvalues of structured matrices is the theory of GLT sequences. By the GLT theory one can derive a function, which describes the singular value or the eigenvalue distribution
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9b592d25ba85978b08da4ea14604c8ce
https://hdl.handle.net/11383/2143513
https://hdl.handle.net/11383/2143513