Zobrazeno 1 - 10
of 25
pro vyhledávání: '"Matthew Weel"'
Autor:
M. C. George, R. McConnell, Marcin Zieliński, Philip Richerme, W. S. Kolthammer, Gerald Gabrielse, D. W. Fitzakerley, D. Grzonka, Jochen Walz, Matthew Weel, A. Müllers, E. A. Hessels, C. H. Storry
Lasers are used to control the production of highly excited positronium atoms (Ps*). The laser light excites Cs atoms to Rydberg states that have a large cross section for resonant charge-exchange collisions with cold trapped positrons. For each tria
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::83485cee90df6d2cc29336f2ff48ee6d
http://ruj.uj.edu.pl/xmlui/handle/item/29456
http://ruj.uj.edu.pl/xmlui/handle/item/29456
Autor:
E. A. Hessels, Jonathan Wrubel, B. Levitt, W. S. Kolthammer, Andrew Speck, D. Comeau, D. Le Sage, R. McConnell, Matthew Weel, C. H. Storry, Z. Zhang, D. Grzonka, Gerald Gabrielse, P. Larochelle, M. C. George, T. Sefzick, W. Oelert, Jochen Walz
Publikováno v:
Physics Letters B. 656:25-29
Ten-nanosecond pulses of photoelectrons liberated by intense UV laser pulses from a thin gold layer are captured into a single-component plasma that is ideally suited to cool antiprotons ( p ¯ ) for antihydrogen ( H ¯ ) production. Up to a billion
Publikováno v:
Canadian Journal of Physics. 84:775-786
We discuss design considerations and construction of a home-built electro-optic phase modulator (EOM) that can be used for locking a laser to an atomic transition. The EOM is designed to operate at a resonant frequency of ≈20 MHz and imposes a phas
Publikováno v:
Canadian Journal of Physics. 83:907-918
We describe an inexpensive lock-in amplifier that can be built using discrete off-the-shelf RF components and home-built analog circuits. This lock-in has been used in a feedback loop to lock the frequency of a laser to an atomic transition. The freq
Autor:
A. Kumarakrishnan, G. Spirou, Matthew Weel, P.R. Battle, Itay Yavin, R.C. Swanson, A. Vorozcovs
Publikováno v:
Canadian Journal of Physics. 81:625-638
We have used an acousto-optic modulator (AOM) to impose a frequency-modulated signal on an incident laser beam. The incident laser beam is focussed into the AOM where it undergoes Bragg diffraction and is then retro-reflected. The diffracted beam is
Autor:
A. Kumarakrishnan, Matthew Weel
Publikováno v:
Canadian Journal of Physics. 80:1449-1458
We describe how a lock-in amplifier can be used in a feedback loop to lock the frequency of a laser to an atomic transition in 85Rb. A simple physical explanation is presented to describe the shape of the feedback signal generated by the "lock in" an
Publikováno v:
American Journal of Physics. 70:149-152
We consider the ballistic expansion of a cloud of trapped atoms falling under the influence of gravity. Using a simple coordinate transformation, we derive an analytical expression for the time-of-flight signal. The properties of the signal can be us
Autor:
A. Müllers, E. A. Hessels, D. W. Fitzakerley, S. Ettenauer, Matthew Weel, Philip Richerme, M. C. George, Gerald Gabrielse, Jochen Walz, E. Tardiff, R. Kalra, C. H. Storry
Publikováno v:
Physical Review A. 87
The signature of trapped antihydrogen ($\overline{\mathrm{H}}$) atoms is the annihilation signal detected when the magnetic trap that confines the atoms is suddenly switched off. This signal would be difficult to distinguish from the annihilation sig
Autor:
Matthew Weel, C. H. Storry, S. Ettenauer, M. C. George, E. Tardiff, R. Kalra, Gerald Gabrielse, W. Oelert, M. Marshall, K. Marable, D. Grzonka, T. Sefzick, D. W. Fitzakerley, E. A. Hessels, Jack DiSciacca
Publikováno v:
Physical review letters 110(13), 130801 (2013). doi:10.1103/PhysRevLett.110.130801
\DeclareRobustCommand{\pbar}{\HepAntiParticle{p}{}{}\xspace} \DeclareRobustCommand{\p}{\HepParticle{p}{}{}\xspace} \DeclareRobustCommand{\mup}{$\mu_{p}${}{}\xspace} \DeclareRobustCommand{\mupbar}{$\mu_{\pbar}${}{}\xspace} \DeclareRobustCommand{\muN}{
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5b43c1c00a97045d0b63258995db124b
https://hdl.handle.net/2128/5733
https://hdl.handle.net/2128/5733
Autor:
D. W. Fitzakerley, K. Marable, T. D. G. Skinner, Matthew Weel, M. C. George, N. Jones, W. Oelert, E. A. Hessels, Marcin Zieliński, E. Tardiff, C. H. Storry, C. D. Hamley, Gerald Gabrielse, D. Grzonka
Publikováno v:
Journal of Physics B: Atomic, Molecular and Optical Physics. 49:064001
Four billion positrons (e+) are accumulated in a Penning–Ioffe trap apparatus at 1.2 K and