Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Matthew Rupert"'
Publikováno v:
Communications in Mathematical Physics. 400:639-682
Autor:
Matthew Rupert
Publikováno v:
Известия Российской академии наук. Серия математическая. 86:187-206
Motivated by connections to the singlet vertex operator algebra in the $\mathfrak{g}=\mathfrak{sl}_2$ case, we study the unrolled restricted quantum group $\overline{U}_q^{ H}(\mathfrak{g})$ for any finite dimensional complex simple Lie algebra $\mat
Autor:
Matthew Rupert, Thomas Creutzig
Publikováno v:
Communications in Contemporary Mathematics. 24
We construct families of commutative (super) algebra objects in the category of weight modules for the unrolled restricted quantum group $\overline{U}_q^H(\mfg)$ of a simple Lie algebra $\mfg$ at roots of unity, and study their categories of local mo
Publikováno v:
Journal of Pure and Applied Algebra. 222:3224-3247
We study relationships between the restricted unrolled quantum group U ‾ q H ( sl 2 ) at q = e π i / r , and the singlet vertex operator algebra M ( r ) , r ≥ 2 . We use deformable families of modules to efficiently compute ( 1 , 1 ) -tangle inv
The $\mathcal{B}_p$-algebras are a family of vertex operator algebras parameterized by $p\in \mathbb Z_{\geq 2}$. They are important examples of logarithmic CFTs and appear as chiral algebras of type $(A_1, A_{2p-3})$ Argyres-Douglas theories. The fi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b732d9c95c8827ded4a7d355ed7573f2
http://arxiv.org/abs/1906.07212
http://arxiv.org/abs/1906.07212
Autor:
Jean Auger, Matthew Rupert
We construct a direct sum completion $\mathcal{C}_{\oplus}$ of a given braided monoidal category $\mathcal{C}$ which allows for the rigorous treatment of infinite order simple current extensions of vertex operator algebras as seen in \cite{CKL}. As a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ef38fc0093cc6b86f3a875a597668b2e
http://arxiv.org/abs/1711.05343
http://arxiv.org/abs/1711.05343
Autor:
Matthew Rupert, Eric Woolgar
Scalar-tensor gravitation theories, such as the Brans-Dicke family of theories, are commonly partly described by a modified Einstein equation in which the Ricci tensor is replaced by the Bakry-\'Emery-Ricci tensor of a Lorentzian metric and scalar fi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::65b025d169ec27e1144312b18f69cd52
http://arxiv.org/abs/1310.3894
http://arxiv.org/abs/1310.3894
The Eynard-Orantin topological recursion relies on the geometry of a Riemann surface S and two meromorphic functions x and y on S. To formulate the recursion, one must assume that x has only simple ramification points. In this paper we propose a gene
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::956ca7d5280aadc0da00b3214c13f3a2
http://arxiv.org/abs/1208.6035
http://arxiv.org/abs/1208.6035