Zobrazeno 1 - 10
of 33
pro vyhledávání: '"Matthew R Norman"'
Publikováno v:
Journal of Advances in Modeling Earth Systems, Vol 15, Iss 10, Pp n/a-n/a (2023)
Abstract This study investigates inherent numerical dissipation due to upwind fluxes and reconstruction strategies for collocated Finite‐Volume integration of the Euler equations. Idealized supercell simulations are used without any explicit dissip
Externí odkaz:
https://doaj.org/article/d8b22f770502488e82e5db5f67545c72
Publikováno v:
Geoscientific model development 16(3), 977-1008 (2023). doi:10.5194/gmd-16-977-2023
Geoscientific model development 16(3), 977 - 1008 (2023). doi:10.5194/gmd-16-977-2023
Published by Copernicus, Katlenburg-Lindau
Published by Copernicus, Katlenburg-Lindau
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8104e03856648ec1d51bfc4d371bf35d
https://gmd.copernicus.org/articles/16/977/2023/
https://gmd.copernicus.org/articles/16/977/2023/
The Simulation Environment for Geomorphology, Hydrodynamics and Ecohydrology in Integrated form (SERGHEI) is a multi-dimensional, multi-domain and multi-physics model framework for environmental and landscape simulation, designed with an outlook towa
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::885260db241fe79764bc0fbf709b595b
https://doi.org/10.5194/gmd-2022-208
https://doi.org/10.5194/gmd-2022-208
Autor:
Xingqiu Yuan, Walter M. Hannah, L. R. Leung, Christopher Eldred, Isaac Lyngaas, Mark A. Taylor, B. R. Hillman, Sarat Sreepathi, David A Bader, Matthew R. Norman, Kyle G. Pressel, J. Lee, C. R. Jones
Publikováno v:
The International Journal of High Performance Computing Applications. 36:93-105
Clouds represent a key uncertainty in future climate projection. While explicit cloud resolution remains beyond our computational grasp for global climate, we can incorporate important cloud effects through a computational middle ground called the Mu
Autor:
Matthew R. Norman
Publikováno v:
Quarterly Journal of the Royal Meteorological Society. 147:1661-1690
Autor:
Marco A. Giorgetta, William Sawyer, Xavier Lapillonne, Panagiotis Adamidis, Dmitry Alexeev, Valentin Clément, Remo Dietlicher, Jan Frederik Engels, Monika Esch, Henning Franke, Claudia Frauen, Walter M. Hannah, Benjamin R. Hillman, Luis Kornblueh, Philippe Marti, Matthew R. Norman, Robert Pincus, Sebastian Rast, Daniel Reinert, Reiner Schnur, Uwe Schulzweida, Bjorn Stevens
Publikováno v:
eISSN
Geoscientific Model Development, 15 (18)
Geoscientific Model Development
Geoscientific Model Development, 15 (18)
Geoscientific Model Development
Classical numerical models for the global atmosphere, as used for numerical weather forecasting or climate research, have been developed for conventional central processing unit (CPU) architectures. This hinders the employment of such models on curre
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ebc8d88901073b24bc297ecd598f38c7
https://doi.org/10.5194/egusphere-2022-152
https://doi.org/10.5194/egusphere-2022-152
Autor:
Muralikrishnan Gopalakrishnan Meena, Amir K. Ziabari, Singanallur V. Venkatakrishnan, Isaac R. Lyngaas, Matthew R. Norman, Balint Joo, Thomas L. Beck, Charles A. Bouman, Anuj J. Kapadia, Xiao Wang
Publikováno v:
Electronic Imaging. 35:228-1
Autor:
Jeffrey M. Larkin, Matthew R. Norman
Publikováno v:
SIAM Journal on Scientific Computing. 42:B1302-B1327
Atmospheric weather and climate models must perform simulations very quickly to be useful. Therefore, modelers have traditionally focused on reducing computations as much as possible. However, in o...
Publikováno v:
Geophysical Research Letters. 46:6069-6079