Zobrazeno 1 - 10
of 24
pro vyhledávání: '"Matthew J. Muckley"'
Autor:
Ilias I. Giannakopoulos, Matthew J. Muckley, Jesi Kim, Matthew Breen, Patricia M. Johnson, Yvonne W. Lui, Riccardo Lattanzi
Publikováno v:
Scientific Reports, Vol 14, Iss 1, Pp 1-16 (2024)
Abstract We introduce three architecture modifications to enhance the performance of the end-to-end (E2E) variational network (VarNet) for undersampled MRI reconstructions. We first implemented the Feature VarNet, which propagates information through
Externí odkaz:
https://doaj.org/article/39da2bf435794337885f38c266e53c69
Autor:
Meagan A. Cauble, Matthew J. Muckley, Ming Fang, Jeffrey A. Fessler, Kathleen Welch, Edward D. Rothman, Bradford G. Orr, Le T. Duong, Mark M. Banaszak Holl
Publikováno v:
Bone Reports, Vol 5, Iss , Pp 243-251 (2016)
The impact of estrogen depletion and drug treatment on type I collagen fibril nanomorphology and collagen fibril packing (microstructure) was evaluated by atomic force microscopy (AFM) using an ovariectomized (OVX) rabbit model of estrogen deficiency
Externí odkaz:
https://doaj.org/article/55178759ab6e4897b395d421f7282d87
Autor:
Alireza Radmanesh, Matthew J. Muckley, Tullie Murrell, Emma Lindsey, Anuroop Sriram, Florian Knoll, Daniel K. Sodickson, Yvonne W. Lui
Publikováno v:
Radiol Artif Intell
PURPOSE: To explore the limits of deep learning–based brain MRI reconstruction and identify useful acceleration ranges for general-purpose imaging and potential screening. MATERIALS AND METHODS: In this retrospective study conducted from 2019 throu
Autor:
Matthew J. Muckley, Jure Zbontar, William R. Walter, Mohammad Samim, Tullie Murrell, Aaron Defazio, Nafissa Yakubova, Leon Rybak, Gina A. Ciavarra, C. Lawrence Zitnick, Zhengnan Huang, Dana J Lin, Florian Knoll, Mitchell J Kline, Erin F. Alaia, Michael G. Rabbat, Ruben Stern, Anuroop Sriram, Michael P. Recht, Yvonne W. Lui, Patricia M. Johnson, Daniel K. Sodickson
Publikováno v:
AJR Am J Roentgenol
OBJECTIVE: Deep learning (DL) image reconstruction has the potential to disrupt the current state of MRI by significantly decreasing the time required for MRI examinations. Our goal was to use DL to accelerate MRI to allow a 5-minute comprehensive ex
Publikováno v:
Journal of Magnetic Resonance Imaging. 50:1633-1640
BACKGROUND Quantifying the biomechanical properties of pancreatic tumors could potentially help with assessment of tumor aggressiveness, prognosis, and prediction of therapy response. PURPOSE To quantify respiratory-induced deformation in the pancrea
Autor:
Yohan Jun, Simon Arberet, Jean-Luc Starck, Dominik Nickel, Alireza Radmanesh, Yvonne W. Lui, Sunwoo Kim, Matthew J. Muckley, Mahmoud Mostapha, Jonas Teuwen, Zhengnan Huang, Nafissa Yakubova, Dosik Hwang, Geunu Jeong, Zaccharie Ramzi, Florian Knoll, Anuroop Sriram, Philippe Ciuciu, Chaoping Zhang, Bruno Riemenschneider, Hyungseob Shin, Jingyu Ko, Dimitrios Karkalousos
Publikováno v:
IEEE Transactions on Medical Imaging
IEEE Transactions on Medical Imaging, Institute of Electrical and Electronics Engineers, In press, ⟨10.1109/TMI.2021.3075856⟩
IEEE transactions on medical imaging
IEEE Transactions on Medical Imaging, In press, ⟨10.1109/TMI.2021.3075856⟩
IEEE Transactions on Medical Imaging, Institute of Electrical and Electronics Engineers, In press, ⟨10.1109/TMI.2021.3075856⟩
IEEE transactions on medical imaging
IEEE Transactions on Medical Imaging, In press, ⟨10.1109/TMI.2021.3075856⟩
Accelerating MRI scans is one of the principal outstanding problems in the MRI research community. Towards this goal, we hosted the second fastMRI competition targeted towards reconstructing MR images with subsampled k-space data. We provided partici
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ada6cd85033aac2da6c4388d81c59f5a
https://hal.archives-ouvertes.fr/hal-03066150v2/document
https://hal.archives-ouvertes.fr/hal-03066150v2/document
Autor:
Matthew J. Muckley, Jure Zbontar, Daniel K. Sodickson, Tullie Murrell, Florian Knoll, Michael P. Recht, Aaron Defazio, Michael G. Rabbat, Anuroop Sriram, Nafissa Yakubova, C. Lawrence Zitnick
Publikováno v:
Magn Reson Med
Purpose To advance research in the field of machine learning for MR image reconstruction with an open challenge. Methods We provided participants with a dataset of raw k-space data from 1,594 consecutive clinical exams of the knee. The goal of the ch
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::14632c0691889e20676bfe76ee34dd97
Publikováno v:
CVPR
The goal of MRI reconstruction is to restore a high fidelity image from partially observed measurements. This partial view naturally induces reconstruction uncertainty that can only be reduced by acquiring additional measurements. In this paper, we p
Autor:
Daniel K. Sodickson, Matthew J. Muckley, Gregory Lemberskiy, Antonios Papaioannou, Dmitry S. Novikov, Els Fieremans, Florian Knoll, Eddy Solomon, Yvonne W. Lui, Benjamin Ades-Aron
Publikováno v:
Magn Reson Med
We develop and evaluate a neural network-based method for Gibbs artifact and noise removal. A convolutional neural network (CNN) was designed for artifact removal in diffusion-weighted imaging data. Two implementations were considered: one for magnit
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2d87a0a61e0ed60f1cbaea393b18d444
http://arxiv.org/abs/1905.04176
http://arxiv.org/abs/1905.04176
Autor:
Florian Knoll, Kerstin Hammernik, Mary Bruno, Matthew J. Muckley, Patricia M. Johnson, Erich Kobler, Thomas Pock
Publikováno v:
Machine Learning for Medical Image Reconstruction ISBN: 9783030338428
MLMIR@MICCAI
MLMIR@MICCAI
Magnetic resonance imaging is a leading image modality for many clinical applications; however, a significant drawback is the lengthy data acquisition. This motivates the development of methods for reconstruction of sparsely sampled image data. One s
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::2236e0b518a260c4fb1f91262d4eb848
https://doi.org/10.1007/978-3-030-33843-5_7
https://doi.org/10.1007/978-3-030-33843-5_7