Zobrazeno 1 - 10
of 28
pro vyhledávání: '"Matthew A. Papanikolas"'
Autor:
Ken Ono, Matthew A. Papanikolas
Publikováno v:
Number Theory for the Millennium III ISBN: 9780138747022
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::3b934edfdf9b624c9f8e3802cf19a97a
https://doi.org/10.1201/9780138747022-5
https://doi.org/10.1201/9780138747022-5
We develop tools for constructing rigid analytic trivializations for Drinfeld modules as infinite products of Frobenius twists of matrices, from which we recover the rigid analytic trivialization given by Pellarin in terms of Anderson generating func
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::50bc91cf9855d9d660dda1b7b91a92ad
http://arxiv.org/abs/2104.02670
http://arxiv.org/abs/2104.02670
Publikováno v:
EMS Series of Congress Reports ISBN: 9783037191989
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::e0574822efc3b1a6a3e07da2c056eae6
https://doi.org/10.4171/198
https://doi.org/10.4171/198
Publikováno v:
Journal of the European Mathematical Society. 21:405-440
Characteristic p multizeta values were initially studied by Thakur, who defined them as analogues of classical multiple zeta values of Euler. In the present paper we establish an effective criterion for Eulerian multizeta values, which characterizes
Autor:
Matthew A. Papanikolas
We investigate interconnected aspects of hyperderivatives of polynomials over finite fields, q-th powers of polynomials, and specializations of Vandermonde matrices. We construct formulas for Carlitz multiplication coefficients using hyperderivatives
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bcd03d99d7bd3e33c539945795ef1c44
http://arxiv.org/abs/1812.09739
http://arxiv.org/abs/1812.09739
This volume contains research and survey articles on Drinfeld modules, Anderson $t$-modules and $t$-motives. Much material that had not been easily accessible in the literature is presented here, for example the cohomology theories and Pink's theory
Autor:
Matthew A. Papanikolas, Oğuz Gezmiş
Introduced by Angl\`{e}s, Pellarin, and Tavares Ribeiro, Drinfeld modules over Tate algebras are closely connected to Anderson log-algebraicity identities, Pellarin $L$-series, and Taelman class modules. In the present paper we define the de Rham map
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8f62309173dfb9873094492f2d08db41
http://arxiv.org/abs/1805.05386
http://arxiv.org/abs/1805.05386
We formulate and prove a log-algebraicity theorem for arbitrary rank Drinfeld modules defined over the polynomial ring F_q[theta]. This generalizes results of Anderson for the rank one case. As an application we show that certain special values of Go
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::cf310a977dfe2eb5055eba8cab21da2d
http://arxiv.org/abs/1703.03368
http://arxiv.org/abs/1703.03368
Publikováno v:
Mathematische Zeitschrift. 276:1151-1163
The aim of this paper is to prove a Mahler measure formula of a four-variable Laurent polynomial whose zero locus defines a Calabi–Yau threefold. We show that its Mahler measure is a rational linear combination of a special \(L\)-value of the norma