Zobrazeno 1 - 10
of 38
pro vyhledávání: '"Mats Granath"'
Publikováno v:
Scientific Reports, Vol 14, Iss 1, Pp 1-18 (2024)
Abstract Quantum computing offers new heuristics for combinatorial problems. With small- and intermediate-scale quantum devices becoming available, it is possible to implement and test these heuristics on small-size problems. A candidate for such com
Externí odkaz:
https://doaj.org/article/e2381b1be40a44cc9522513b1c2f3a96
Publikováno v:
Quantum, Vol 8, p 1468 (2024)
The code-capacity threshold of a scalable quantum error correcting stabilizer code can be expressed as a thermodynamic phase transition of a corresponding random-bond Ising model. Here we study the XY and XZZX surface codes under phase-biased noise,
Externí odkaz:
https://doaj.org/article/c3f4677f46c24504835b8c3cf423d705
Publikováno v:
Quantum, Vol 6, p 698 (2022)
We consider a topological stabilizer code on a honeycomb grid, the "XYZ$^2$" code. The code is inspired by the Kitaev honeycomb model and is a simple realization of a "matching code" discussed by Wootton [J. Phys. A: Math. Theor. 48, 215302 (2015)],
Externí odkaz:
https://doaj.org/article/11f2cbc5a3e640659b6ab07bfbb6658e
Publikováno v:
Physical Review Research, Vol 2, Iss 2, p 023230 (2020)
We present an AI-based decoding agent for quantum error correction of depolarizing noise on the toric code. The agent is trained using deep reinforcement learning (DRL), where an artificial neural network encodes the state-action Q values of error-co
Externí odkaz:
https://doaj.org/article/9b9a0a9614f0486da8c9579a1b79ecc2
Autor:
Oleksandr Balabanov, Mats Granath
Publikováno v:
Physical Review Research, Vol 2, Iss 1, p 013354 (2020)
Unsupervised machine learning is a cornerstone of artificial intelligence as it provides algorithms capable of learning tasks, such as classification of data, without explicit human assistance. We present an unsupervised deep learning protocol for fi
Externí odkaz:
https://doaj.org/article/e60ebb02415b4f7a97a095e10d6405c9
Publikováno v:
Quantum, Vol 3, p 183 (2019)
We implement a quantum error correction algorithm for bit-flip errors on the topological toric code using deep reinforcement learning. An action-value Q-function encodes the discounted value of moving a defect to a neighboring site on the square grid
Externí odkaz:
https://doaj.org/article/7457ca5e4688482cb5e5f0561f9a5182
Autor:
Karl Hammar, Alexei Orekhov, Patrik Wallin Hybelius, Anna Katariina Wisakanto, Basudha Srivastava, Anton Frisk Kockum, Mats Granath
Publikováno v:
Physical Review A. 105
Efficient high-performance decoding of topological stabilizer codes has the potential to crucially improve the balance between logical failure rates and the number and individual error rates of the constituent qubits. High-threshold maximum-likelihoo
Nematic single-component superconductivity and loop-current order from pair-density wave instability
Autor:
Jonatan Wårdh, Mats Granath
We investigate the nematic and loop-current type orders that may arise as vestigial precursor phases in a model with an underlying pair-density wave (PDW) instability. We discuss how such a vestigial phase gives rise to a highly anisotropic stiffness
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9137760a6efca9a5d4e755bec9b25d69
http://arxiv.org/abs/2203.08250
http://arxiv.org/abs/2203.08250
Publikováno v:
IABSE Symposium, Prague 2022: Challenges for Existing and Oncoming Structures.
Project tendering is the construction business “Tightrope-walking.” It is a time-limited balance act where technical and business specialists find the best technical proposal at the right price. The purpose and aim of this study were to explore a
Autor:
Oleksandr Balabanov, Mats Granath
Multi-band insulating Bloch Hamiltonians with internal or spatial symmetries, such as particle-hole or inversion, may have topologically disconnected sectors of trivial atomic-limit (momentum-independent) Hamiltonians. We present a neural-network-bas
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d2ef5c4528e197393fad9356cbd6e171