Zobrazeno 1 - 10
of 690
pro vyhledávání: '"Matrix permanent"'
In contrast to the determinant, no algorithm is known for the exact determination of the permanent of a square matrix that runs in time polynomial in its dimension. Consequently, non interacting fermions are classically efficiently simulatable while
Externí odkaz:
http://arxiv.org/abs/2307.04681
Autor:
Huh, Joonsuk
Exact calculation and even multiplicative error estimation of matrix permanent are challenging for both classical and quantum computers. Regarding the permanents of random Gaussian matrices, the additive error estimation is closely linked to boson sa
Externí odkaz:
http://arxiv.org/abs/2205.01328
Autor:
Newman, James E., Vardi, Moshe Y.
The matrix permanent belongs to the complexity class #P-Complete. It is generally believed to be computationally infeasible for large problem sizes, and significant research has been done on approximation algorithms for the matrix permanent. We prese
Externí odkaz:
http://arxiv.org/abs/2012.03367
Autor:
Bozdogan, Ali Onder
This paper defines the Iris function and provides two formulations of the matrix permanent. The first formulation, valid for arbitrary complex matrices, expresses the permanent of a complex matrix as a contour integral of a second order Iris function
Externí odkaz:
http://arxiv.org/abs/1902.04152
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Counting the number of perfect matchings in bipartite graphs, or equivalently computing the permanent of 0-1 matrices, is an important combinatorial problem that has been extensively studied by theoreticians and practitioners alike. The permanent is
Externí odkaz:
http://arxiv.org/abs/1908.03252
Publikováno v:
Phys. Rev. A 99, 052308 (2019)
Linear optical computing (LOC) with thermal light has recently gained attention because the problem is connected to the permanent of a Hermitian positive semidefinite matrix (HPSM), which is of importance in the computational complexity theory. Despi
Externí odkaz:
http://arxiv.org/abs/1904.06673
Autor:
Chen, Lingji
Matrix permanent plays a key role in data association probability calculations. Exact algorithms (such as Ryser's) scale exponentially with matrix size. Fully polynomial time randomized approximation schemes exist but are quite complex. This letter i
Externí odkaz:
http://arxiv.org/abs/1807.06480
We study the problem of allocating $m$ items to $n$ agents subject to maximizing the Nash social welfare (NSW) objective. We write a novel convex programming relaxation for this problem, and we show that a simple randomized rounding algorithm gives a
Externí odkaz:
http://arxiv.org/abs/1609.07056
Publikováno v:
Entropy, Vol 22, Iss 3, p 322 (2020)
We reveal the analytic relations between a matrix permanent and major nature’s complexities manifested in critical phenomena, fractal structures and chaos, quantum information processes in many-body physics, number-theoretic complexity in mathemati
Externí odkaz:
https://doaj.org/article/c2c8d27b9c664b6d80f71cf6620bb669