Zobrazeno 1 - 10
of 102
pro vyhledávání: '"Matolcsi, M."'
Autor:
Matolcsi, M.
We describe an approach to the circulant Hadamard conjecture based on Walsh-Fourier analysis. We show that the existence of a circulant Hadamard matrix of order $n$ is equivalent to the existence of a non-trivial solution of a certain homogenous line
Externí odkaz:
http://arxiv.org/abs/1409.7198
Autor:
Matolcsi, M., Weiner, M.
The linear programming (LP) bound of Delsarte can be applied to several problems in various branches of mathematics. We describe a general Fourier analytic method to get a slight improvement on this bound. We then apply our method to the problem of m
Externí odkaz:
http://arxiv.org/abs/1409.7194
Publikováno v:
European Journal of Combinatorics, Vol. 34 (7), 1071-1077, 2013
This note concerns the so-called pyjama problem, whether it is possible to cover the plane by finitely many rotations of vertical strips of half-width $\varepsilon$. We first prove that there exist no periodic coverings for $\varepsilon<1/3$. Then we
Externí odkaz:
http://arxiv.org/abs/1211.6138
We exhibit an infinite family of {\it triplets} of mutually unbiased bases (MUBs) in dimension 6. These triplets involve the Fourier family of Hadamard matrices, $F(a,b)$. However, in the main result of the paper we also prove that for any values of
Externí odkaz:
http://arxiv.org/abs/0902.0882
In the extensive literature dealing with the relativistic phenomenon of Thomas rotation several methods have been developed for calculating the Thomas rotation angle of a gyroscope along a circular world line. One of the most appealing concepts, intr
Externí odkaz:
http://arxiv.org/abs/math-ph/0611047
This preprint concerns a mathematically rigorous treatment of an interesting physical phenomenon in relativity theory. We would like to draw the reader's attention particularly to the abstract mathematical formalism of relativity (which was developed
Externí odkaz:
http://arxiv.org/abs/math-ph/0611046
Autor:
Matolcsi, T., Matolcsi, M.
Exact and simple calculation of Thomas rotation and Thomas precessions along a circular world line is presented in an absolute (coordinate-free) formulation of special relativity. Besides the simplicity of calculations the absolute treatment of space
Externí odkaz:
http://arxiv.org/abs/math-ph/0506041
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In European Journal of Combinatorics October 2013 34(7):1071-1077
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.