Zobrazeno 1 - 10
of 13
pro vyhledávání: '"Mathis Hoffmann"'
Autor:
Lukas Bommes, Mathis Hoffmann, Claudia Buerhop‐Lutz, Tobias Pickel, Jens Hauch, Christoph Brabec, Andreas Maier, Ian Marius Peters
Publikováno v:
Progress in photovoltaics 30(6), 597-614 (2022). doi:10.1002/pip.3518
Increasing deployment of photovoltaic (PV) plants requires methods for automatic detection of faulty PV modules in modalities, such as infrared (IR) images. Recently, deep learning has become popular for this. However, related works typically sample
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::77b278f95dc9850d55f2708e52c2d7f3
https://opus4.kobv.de/opus4-fau/frontdoor/index/index/docId/19638
https://opus4.kobv.de/opus4-fau/frontdoor/index/index/docId/19638
Autor:
Bernd Doll, Dirk Tegtmeyer, Christoph J. Brabec, Claudia Buerhop-Lutz, Mathis Hoffmann, Rene Schuler, Johannes Hepp, Florian Talkenberg, Manuel Baier, Jens Hauch, Ian Marius Peters
Publikováno v:
Organic, Hybrid, and Perovskite Photovoltaics XXII.
Cost-effective, fast, and non-destructive, on-site photovoltaic (PV) characterization methods are of interest to PV operators to determine countermeasures against defects causing power loss or against safety problems. Combining the advantages of both
Autor:
Vincent Christlein, Bernd Doll, Andreas Maier, Claudia Buerhop-Lutz, Christoph J. Brabec, Mathis Hoffmann, Ian Marius Peters, Johannes Hepp
Publikováno v:
2021 IEEE 48th Photovoltaic Specialists Conference (PVSC).
The individual causes for power loss of photovoltaic modules are investigated for quite some time. Recently, it has been shown that the power loss of a module is, for example, related to the fraction of inactive areas. While these areas can be easily
Autor:
Lasse Kling, Weilin Fu, Silke Christiansen, Frank Schebesch, Leonid Mill, Christopher Syben, Tobias Würfl, Andreas Maier, Mathis Hoffmann, Bernhard Stimpel
Publikováno v:
Nature Machine Intelligence. 1:373-380
We describe an approach for incorporating prior knowledge into machine learning algorithms. We aim at applications in physics and signal processing in which we know that certain operations must be embedded into the algorithm. Any operation that allow
Autor:
Tobias Pickel, Thilo Winkler, Claudia Buerhop-Lutz, Mathis Hoffmann, Vincent Christlein, Tobias Würfl, Bernd Doll, Ian Marius Peters, Christoph J. Brabec, Andreas Maier, Luca Reeb
Publikováno v:
Progress in photovoltaics 29(8), 920-935 (2021). doi:10.1002/pip.3416
Seminar, Deutschland
Seminar, Deutschland
Automated inspection plays an important role in monitoring large‐scale photovoltaic power plants. Commonly, electroluminescense measurements are used to identify various types of defects on solar modules, but have not been used to determine the pow
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fb99cfa46c3da6d291e09887717b0b12
https://hdl.handle.net/2128/28310
https://hdl.handle.net/2128/28310
Autor:
Bernd Doll, Andreas Maier, Mathis Hoffmann, Thomas Köhler, Ian Marius Peters, Christoph J. Brabec, Frank Schebesch, Vincent Christlein, Florian Talkenberg
Publikováno v:
IEEE journal of photovoltaics 11(4), 1051-1058 (2021). doi:10.1109/JPHOTOV.2021.3072229
Visual inspection of solar modules is an important monitoring facility in photovoltaic power plants. Since a single measurement of fast CMOS sensors is limited in spatial resolution and often not sufficient to reliably detect small defects, we apply
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::58f6f31bff4ddece2b20d4a7164342ec
http://arxiv.org/abs/2011.05003
http://arxiv.org/abs/2011.05003
Publikováno v:
ICIP
Photovoltaic is one of the most important renewable energy sources for dealing with world-wide steadily increasing energy consumption. This raises the demand for fast and scalable automatic quality management during production and operation. However,
Autor:
Andreas K, Maier, Christopher, Syben, Bernhard, Stimpel, Tobias, Würfl, Mathis, Hoffmann, Frank, Schebesch, Weilin, Fu, Leonid, Mill, Lasse, Kling, Silke, Christiansen
Publikováno v:
Nature machine intelligence
We describe an approach for incorporating prior knowledge into machine learning algorithms. We aim at applications in physics and signal processing in which we know that certain operations must be embedded into the algorithm. Any operation that allow
Autor:
Christoph J. Brabec, Bernd Doll, Andreas Maier, Vincent Christlein, Mathis Hoffmann, Florian Talkenberg
Publikováno v:
Computer Analysis of Images and Patterns ISBN: 9783030298906
CAIP (2)
Cham : Springer International Publishing, Lecture Notes in Computer Science 11679, 519-531 (2019). doi:10.1007/978-3-030-29891-3_46
Computer Analysis of Images and Patterns / Vento, Mario (Editor) [https://orcid.org/0000-0002-2948-741X] ; Cham : Springer International Publishing, 2019, Chapter 46 ; ISSN: 0302-9743=1611-3349 ; ISBN: 978-3-030-29890-6=978-3-030-29891-3 ; doi:10.1007/978-3-030-29891-3
CAIP (2)
Cham : Springer International Publishing, Lecture Notes in Computer Science 11679, 519-531 (2019). doi:10.1007/978-3-030-29891-3_46
Computer Analysis of Images and Patterns / Vento, Mario (Editor) [https://orcid.org/0000-0002-2948-741X] ; Cham : Springer International Publishing, 2019, Chapter 46 ; ISSN: 0302-9743=1611-3349 ; ISBN: 978-3-030-29890-6=978-3-030-29891-3 ; doi:10.1007/978-3-030-29891-3
Fast, non-destructive and on-site quality control tools, mainly high sensitive imaging techniques, are important to assess the reliability of photovoltaic plants. To minimize the risk of further damages and electrical yield losses, electroluminescenc
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0adbe7478b7f89db0a2c12b7ea8d8b5e
https://doi.org/10.1007/978-3-030-29891-3_46
https://doi.org/10.1007/978-3-030-29891-3_46
Publikováno v:
Medical physicsReferences. 46(12)
BACKGROUND The beam hardening effect is a typical source of artifacts in x-ray cone beam computed tomography (CBCT). It causes streaks in reconstructions and corrupted Hounsfield units toward the center of objects, widely known as cupping artifacts.