Zobrazeno 1 - 10
of 54
pro vyhledávání: '"Mathieu Serrurier"'
Autor:
Alberto Gonzalez-Sanz, Thibaut Boissin, Franck Mamalet, Eustasio del Barrio, Jean-Michel Loubes, Mathieu Serrurier
Publikováno v:
Conference on Computer Vision and Pattern Recognition
Conference on Computer Vision and Pattern Recognition, Jun 2021, Virtuel, Canada. ⟨10.1109/CVPR46437.2021.00057⟩
Conference on Computer Vision and Pattern Recognition, Jun 2021, Virtuel, Canada
CVPR
Conference on Computer Vision and Pattern Recognition, Jun 2021, Virtuel, Canada. ⟨10.1109/CVPR46437.2021.00057⟩
Conference on Computer Vision and Pattern Recognition, Jun 2021, Virtuel, Canada
CVPR
Adversarial examples have pointed out Deep Neural Networks vulnerability to small local noise. It has been shown that constraining their Lipschitz constant should enhance robustness, but make them harder to learn with classical loss functions. We pro
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f72fe3ab1fd9e6e7aa6f758d8103ba7d
https://hal.science/hal-03033400
https://hal.science/hal-03033400
Publikováno v:
HAL
n this paper, we propose a deep-network-based approach that leverages a finite mixture of Weibull distributions to address a key challenge in time-to-event modeling: it comes to a parametric estimation of survival time distribution from censored data
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::58aca3e8bcce1a515bffada6d34d5e16
https://hal.archives-ouvertes.fr/hal-03263989/document
https://hal.archives-ouvertes.fr/hal-03263989/document
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783030863395
ICANN (2)
ICANN (2)
Survival analysis is widely used in medicine, engineering, finance, and many other areas. The fundamental problem considered in this branch of statistics is to capture the relationship between the covariates and the event time distribution. In this p
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::604cc6315ff0640055bb432a105f811b
https://doi.org/10.1007/978-3-030-86340-1_15
https://doi.org/10.1007/978-3-030-86340-1_15
Publikováno v:
HEALTHINF
Publikováno v:
Machine Learning and Knowledge Discovery in Databases: Applied Data Science Track ISBN: 9783030676667
ECML/PKDD (4)
ECML/PKDD (4)
Recently several models have been developed to reduce the annotation effort which is required to perform semantic segmentation. Instead of learning from pixel-level annotations, these models learn from cheaper annotations, e.g. image-level labels, sc
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::59efc3acb34170bbcacc0778deface2c
https://doi.org/10.1007/978-3-030-67667-4_24
https://doi.org/10.1007/978-3-030-67667-4_24
Publikováno v:
ECCV 2020: Computer Vision
16th European Conference on Computer Vision-ECCV 2020
16th European Conference on Computer Vision-ECCV 2020, Aug 2020, online, France. pp.205-221, ⟨10.1007/978-3-030-58542-6_13⟩
Computer Vision – ECCV 2020 ISBN: 9783030585419
ECCV (22)
16th European Conference on Computer Vision-ECCV 2020
16th European Conference on Computer Vision-ECCV 2020, Aug 2020, online, France. pp.205-221, ⟨10.1007/978-3-030-58542-6_13⟩
Computer Vision – ECCV 2020 ISBN: 9783030585419
ECCV (22)
ISBN 978-3-030-58541-9; International audience; In this paper, we investigate the problem of learning disentangled representations. Given a pair of images sharing some attributes, we aim to create a low-dimensional representation which is split into
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::21417f42188851d85ef9e1945396ac42
https://hal.archives-ouvertes.fr/hal-02397803/file/main.pdf
https://hal.archives-ouvertes.fr/hal-02397803/file/main.pdf
Autor:
Mathieu Serrurier, Jean-Christophe Jouhaud, Valentin Kivachuk Burdá, Naty Citlali Cabrera-Gutiérrez, Guillaume Oller, Florian Dupuy, Mohamed Chafik Bakkay, Olivier Mestre, Michaël Zamo, Maud-Alix Mader
Publikováno v:
Weather and Forecasting
Weather and Forecasting, 2021, 36, pp.567-586. ⟨10.1175/WAF-D-20-0093.1⟩
Weather and Forecasting, 2021, 36, pp.567-586. ⟨10.1175/WAF-D-20-0093.1⟩
Cloud cover is crucial information for many applications such as planning land observation missions from space. It remains however a challenging variable to forecast, and Numerical Weather Prediction (NWP) models suffer from significant biases, hence
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d9307a173be388ead145a3d506c03cd0
http://arxiv.org/abs/2006.16678
http://arxiv.org/abs/2006.16678
Precipitation nowcasting is the prediction of the future precipitation rate in a given geographical region with an anticipation time of a few hours at most. It is of great importance for weather forecast users, for activitites ranging from outdoor ac
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::a5924d8ed46836702011222ca9523d0f
https://doi.org/10.5194/egusphere-egu2020-21631
https://doi.org/10.5194/egusphere-egu2020-21631
Publikováno v:
Advances in Knowledge Discovery and Data Mining ISBN: 9783030474256
PAKDD (1)
PAKDD (1)
In this paper, we consider survival analysis with right-censored data which is a common situation in predictive maintenance and health field. We propose a model based on the estimation of two-parameter Weibull distribution conditionally to the featur
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::ea3f5c62480e591812aae9111b894fba
https://doi.org/10.1007/978-3-030-47426-3_53
https://doi.org/10.1007/978-3-030-47426-3_53
Publikováno v:
Machine Learning and Knowledge Discovery in Databases ISBN: 9783030461324
ECML/PKDD (3)
ECML/PKDD (3)
In this paper, we investigate how to learn a suitable representation of satellite image time series in an unsupervised manner by leveraging large amounts of unlabeled data. Additionally, we aim to disentangle the representation of time series into tw
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::879af9b70c034d2478d44f98d94a94d0
https://doi.org/10.1007/978-3-030-46133-1_19
https://doi.org/10.1007/978-3-030-46133-1_19