Zobrazeno 1 - 10
of 847
pro vyhledávání: '"Mathieu Olivier"'
It is shown that the universal enveloping algebra of an infinite-dimensional simple $\mathbb Z^n$-graded Lie algebra is not Noetherian.
Comment: 14 pages. Comments are welcome
Comment: 14 pages. Comments are welcome
Externí odkaz:
http://arxiv.org/abs/2405.15235
Autor:
Lau, Michael, Mathieu, Olivier
We consider bounded weight modules for the universal central extension ${\mathfrak{sl}}_2(J)$ of the Tits-Kantor-Koecher algebra of a unital Jordan algebra $J$. Universal objects called Weyl modules are introduced and studied, and a combinatorial dom
Externí odkaz:
http://arxiv.org/abs/2312.16766
Autor:
Mathieu, Olivier
For g at least 2, the Thurston spine Pg is the subspace of Teichmueller space Tg , consisting of the marked surfaces for which the set of shortest curves, the systoles, cuts the surface into polygons. Our main result is the existence of an infinite s
Externí odkaz:
http://arxiv.org/abs/2310.15618
Autor:
Irmer, Ingrid, Mathieu, Olivier
The systoles of a hyperbolic surface {\Sigma} are the shortest closed geodesics. We say that the systoles fill the surface if the set Syst({\Sigma}) of all systoles cuts {\Sigma} into polygons. We refine an idea of Schmutz [15] to construct closed hy
Externí odkaz:
http://arxiv.org/abs/2310.15531
Autor:
Mathieu, Olivier
Given a field $K$, we investigate which subgroups of the group Aut$\mathbb{A}^2_K$ of polynomial automorphisms of the plane are linear or not. The results are contrasted. The group Aut$\mathbb{A}^2_K$ itself is nonlinear, except if $K$ is finite, but
Externí odkaz:
http://arxiv.org/abs/2303.07734
Autor:
Mathieu, Olivier
Let $K$ be a field, and let $\Aut \,K^2$ be the group of polynomial automorphisms of $K^2$. If $K$ is infinite, this group is nonlinear. Moreover it contains nonlinear FG subgroups when $\ch\,K=0$. On the opposite, it contains some linear "finite cod
Externí odkaz:
http://arxiv.org/abs/2212.02460
Autor:
Mathieu, Olivier
Let $K$ be a field, and let $\Aut \,K^2$ be the group of polynomial automorphisms of $K^2$. We investigate which subgroups are linear or not. In characteristic zero, there are small nonlinear subgroups and some big linear subgroups. When $K$ has fini
Externí odkaz:
http://arxiv.org/abs/2208.12751
Autor:
Abbara, Chadi, Allorge, Delphine, Alvarez, Jean-Claude, Ameline, Alice, Barret, Anne, Berland, Emilie, Bertin, Célian, Besnard, Thierry, Bevalot, Fabien, Billet-Chatenay, Camille, Boucher, Alexandra, Bouquet, Emilie, Bourgine, Joanna, Brunet, Bertrand, Caous, Anne-Sylvie, Cesbron, Alexandre, Charuel, Lauriane, Cheze, Marjorie, Citterio-Quentin, Antony, Collon-Fabie, Philippe, Dailly, Eric, Daveluy, Amélie, Deffontaine, Grégory, Delage, Martine, Delavenne, Xavier, Descamps, Florence, Descoeur, Juliette, Deslandes, Guillaume, Deveaux, Marc, Devos, Bernadette, Doche, Christophe, Eiden, Céline, Fouley, Aurélie, Gaillard, Yvan, Gambier, Nicolas, Ganière, Catherine, Gérardin, Marie, Goullé, Jean-Pierre, Guerard, Pascal, Hoizey, Guillaume, Humbert, Luc, Imbert, Laurent, Kergueris, Marie-France, Kintz, Pascal, Klinzig, Florian, Labat-Deveaux, Laurence, Lacarelle, Bruno, Lacroix, Christian, Lamiable, Denis, Lavit, Michel, Le Boisselier, Reynald, Le Bouil, Anne, Le Meur, Catherine, Lefeuvre, Sandrine, Lelièvre, Bénédicte, Lelong-Boulouard, Véronique, Lemaire-Hurtel, Anne-Sophie, Loilier, Magalie, Lopez, Vincent, Martin-Molins, Claire, Marty, Hélène, Mathieu, Olivier, Mathieu-Daudé, Jean-Claude, Mauras, Yves, Milan, Nathalie, Moal, Aurélie, Morel, Isabelle, Mura, Patrick, Pelissier-Alicot, Anne-Laure, Pépin, Gilbert, Perrin, Martine, Peyre, Anne, Pineau, Alain, Pochard, Liselotte, Pok, Rop, Ragoucy-Sengler, Catherine, Rayer, Raphaël, Redjimi, Nassima, Roman, Emilie, Roussel, Carine, Sabini, Sandrine, Saussereau, Elodie, Scala-Bertola, Julien, Sibille, Pauline, Spadari, Michel, Thiery, Johan, Titier, Karine, Turcant, Alain, Vacher, Pierrick, Venisse, Nicolas, Vieira, Ophélie, Visinoni, Pascale, Revol, B., Willeman, T., Manceau, M., Dumestre-Toulet, V., Gaulier, J.-M., Eysseric-Guérin, H., Fouilhé Sam-Laï, N.
Publikováno v:
In Public Health November 2024 236:381-385
Autor:
Bendjilali-Sabiani, Jean-Joseph, Eiden, Céline, Lestienne, Margot, Cherki, Sabrina, Gautre, David, Van den Broek, Thomas, Mathieu, Olivier, Peyrière, Hélène
Publikováno v:
In Therapies November-December 2024 79(6):655-658
Autor:
Mathieu, Olivier
Publikováno v:
In Journal of Algebra 15 October 2024 656:324-366