Zobrazeno 1 - 10
of 59
pro vyhledávání: '"Mathieu Meyer"'
Publikováno v:
Bulletin of the London Mathematical Society. 50:745-752
Following ideas of Iriyeh and Shibata we give a short proof of the three-dimensional Mahler conjecture {\mf for symmetric convex bodies}. Our contributions include, in particular, simple self-contained proofs of their two key statements. The first of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::97e0c0bbc5609bd73e2ae8f9a21e6ba8
Autor:
Shlomo Reisner, Mathieu Meyer
Using previous results about shadow systems and Steiner symmetrization, we prove that the local maximizers of the volume product of convex bodies are actually the global maximizers, that is: ellipsoids.
Comment: accepted to 'Mathematika'
Comment: accepted to 'Mathematika'
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e7fa1b986d82546570ce347f805bac7a
Publikováno v:
Indiana University Mathematics Journal. 64:735-768
An affine invariant point on the class of convex bodies in R^n, endowed with the Hausdorff metric, is a continuous map p which is invariant under one-to-one affine transformations A on R^n, that is, p(A(K))=A(p(K)). We define here the new notion of d
Publikováno v:
Studia Scientiarum Mathematicarum Hungarica. 50:159-198
Let K ⊂ ℝ2 be an o-symmetric convex body, and K* its polar body. Then we have |K| · |K*| ≧ 8, with equality if and only if K is a parallelogram. (|·| denotes volume). If K ⊂ ℝ2 is a convex body, with o ∈ int K, then |K| · |K*| ≧ 27/4
Autor:
Matthieu Fradelizi1, Mathieu Meyer1
Publikováno v:
Positivity. Jul2008, Vol. 12 Issue 3, p407-420. 14p.
Publikováno v:
New Journal of Chemistry
New Journal of Chemistry, Royal Society of Chemistry, 2016, ⟨10.1039/C6NJ00979D⟩
New Journal of Chemistry, 2016, ⟨10.1039/C6NJ00979D⟩
New Journal of Chemistry, Royal Society of Chemistry, 2016, ⟨10.1039/C6NJ00979D⟩
New Journal of Chemistry, 2016, ⟨10.1039/C6NJ00979D⟩
Aryl-containing lithium perfluorosulfonates form unquestionably a family of salts having fairly good electrochemical performances, especially high cation transference numbers. Here, this family was extended to polysilsesquioxanes in which every silic
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::00fb1b329d59cef05b8d6c45c8bb5fe2
https://hal.archives-ouvertes.fr/hal-01389206
https://hal.archives-ouvertes.fr/hal-01389206
Publikováno v:
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society, American Mathematical Society, 2017, 145, pp.3153-3164. ⟨10.1090/proc/13457⟩
Proceedings of the American Mathematical Society, American Mathematical Society, 2017, 145, pp.3153-3164. ⟨10.1090/proc/13457⟩
Let $K$ be a convex body in $\mathbb R^n$. We prove that in small codimensions, the sections of a convex body through the centroid are quite symmetric with respect to volume. As a consequence of our estimates we give a positive answer to a problem po
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fa1f2830ecbd5a7226ebfc65602f749b
http://arxiv.org/abs/1604.05351
http://arxiv.org/abs/1604.05351
Autor:
Elmiloud Chil, Mathieu Meyer
Publikováno v:
Indagationes Mathematicae. 23:167-183
This paper is mainly concerned with the structure of the centre of a vector lattice. A special attention is paid in the case when E = L p , p ≥ 1 . In this paper we give some characterizations of dense vector sublattices of the centre. Those charac
Publikováno v:
Discrete and Computational Geometry
Discrete and Computational Geometry, Springer Verlag, 2012, 48 (3), pp.721-734. ⟨10.1007/s00454-012-9435-3⟩
Discrete and Computational Geometry, Springer Verlag, 2012, 48 (3), pp.721-734. ⟨10.1007/s00454-012-9435-3⟩
International audience; We elaborate on the use of shadow systems to prove a particular case of the conjectured lower bound of the volume product $\mathcal{P}(K)=\min_{z\in {\rm int}(K)}|K|||K^z|$, where $K\subset \R^n$ is a convex body and $ K^z = \