Zobrazeno 1 - 10
of 73
pro vyhledávání: '"Mathieu Lacroix"'
Autor:
BRACMORT, CÉCILIA
Publikováno v:
Vie des Arts; Autumn2023, Issue 272, p68-71, 4p, 2 Color Photographs
Autor:
Mathieu Lacroix
Publikováno v:
Studia Musicologica Norvegica, Vol 47, Pp 45-62 (2021)
Sammendrag Målet med artikkelen er å gi en innføring i repertoaret for strykekvartett og elektronikk, som nå teller mer enn 160 stykker. Den første delen går igjennom en rekke viktige konsepter innen mixed music og strykekvartetter. Den andre
Externí odkaz:
https://doaj.org/article/aafc900076f9491b96c7b76602d9c6ad
Autor:
Mathieu Lacroix
Publikováno v:
Studia Musicologica Norvegica, Vol 48, Iss 1, Pp 112-113 (2022)
Externí odkaz:
https://doaj.org/article/c4a35633ecb74f17be8ec246d4dc37bc
Autor:
Toru Atsugi, Takashi Teramura, Hiroki Ota, Tomoko Yoshida-Aida, Mika Yamashita, Mathieu Lacroix, Anne-Laure Desroches, Nico Forraz, Colin McGuckin, Eiji Naru
Publikováno v:
Journal of Dermatological Science. 107:52-55
Publikováno v:
Discrete Applied Mathematics. 308:162-167
We represent a flow of a graph G = ( V , E ) as a couple ( C , e ) with C a circuit of G and e an edge of C , and its incidence vector is the 0 ∕ ± 1 vector χ C ∖ e − χ e . The flow cone of G is the cone generated by the flows of G and the u
Publikováno v:
Mathematical Programming. 197:307-336
Publikováno v:
Optimization Letters. 15:1905-1930
In this paper, we study the recently introduced Traveling Car Renter Problem. This latter is a generalization of the well-known traveling salesman problem, where a solution is a set of paths of different colors as well as an orientation of each path
Autor:
Mathieu Lacroix
Publikováno v:
Studia Musicologica Norvegica. 48:112-113
Publikováno v:
Discrete Optimization
Discrete Optimization, Elsevier, 2019, 31 (1), ⟨10.1016/j.disopt.2018.09.003⟩
Discrete Optimization, Elsevier, 2019, 31 (1), ⟨10.1016/j.disopt.2018.09.003⟩
Series–parallel graphs are known to be precisely the graphs for which the standard linear systems describing the cut cone, the cycle cone, the T-join polytope, the cut polytope, the multicut polytope and the T-join dominant are TDI. We prove that t