Zobrazeno 1 - 10
of 26
pro vyhledávání: '"Mathias, Davids"'
Autor:
Qiuyun Fan, Cornelius Eichner, Maryam Afzali, Lars Mueller, Chantal M.W. Tax, Mathias Davids, Mirsad Mahmutovic, Boris Keil, Berkin Bilgic, Kawin Setsompop, Hong-Hsi Lee, Qiyuan Tian, Chiara Maffei, Gabriel Ramos-Llordén, Aapo Nummenmaa, Thomas Witzel, Anastasia Yendiki, Yi-Qiao Song, Chu-Chung Huang, Ching-Po Lin, Nikolaus Weiskopf, Alfred Anwander, Derek K. Jones, Bruce R. Rosen, Lawrence L. Wald, Susie Y. Huang
Publikováno v:
NeuroImage, Vol 254, Iss , Pp 118958- (2022)
Tremendous efforts have been made in the last decade to advance cutting-edge MRI technology in pursuit of mapping structural connectivity in the living human brain with unprecedented sensitivity and speed. The first Connectom 3T MRI scanner equipped
Externí odkaz:
https://doaj.org/article/aeaaabbb2052475aa9761e6aff40f5b4
Autor:
Susie Y. Huang, Thomas Witzel, Boris Keil, Alina Scholz, Mathias Davids, Peter Dietz, Elmar Rummert, Rebecca Ramb, John E. Kirsch, Anastasia Yendiki, Qiuyun Fan, Qiyuan Tian, Gabriel Ramos-Llordén, Hong-Hsi Lee, Aapo Nummenmaa, Berkin Bilgic, Kawin Setsompop, Fuyixue Wang, Alexandru V. Avram, Michal Komlosh, Dan Benjamini, Kulam Najmudeen Magdoom, Sudhir Pathak, Walter Schneider, Dmitry S. Novikov, Els Fieremans, Slimane Tounekti, Choukri Mekkaoui, Jean Augustinack, Daniel Berger, Alexander Shapson-Coe, Jeff Lichtman, Peter J. Basser, Lawrence L. Wald, Bruce R. Rosen
Publikováno v:
NeuroImage, Vol 243, Iss , Pp 118530- (2021)
The first phase of the Human Connectome Project pioneered advances in MRI technology for mapping the macroscopic structural connections of the living human brain through the engineering of a whole-body human MRI scanner equipped with maximum gradient
Externí odkaz:
https://doaj.org/article/3f804dccae384c94902f963dc48ac87b
Autor:
Mathias Davids, Peter Dietz, Gudrun Ruyters, Manuela Roesler, Valerie Klein, Bastien Guérin, David A. Feinberg, Lawrence L. Wald
Publikováno v:
Magnetic Resonance in Medicine. 90:784-801
Publikováno v:
Scientific Reports, Vol 7, Iss 1, Pp 1-14 (2017)
Abstract Rapid switching of applied magnetic fields in the kilohertz frequency range in the human body induces electric fields powerful enough to cause Peripheral Nerve Stimulation (PNS). PNS has become one of the main constraints on the use of high
Externí odkaz:
https://doaj.org/article/bf1d3c7dd0c24ca18a11cbe15bbb0753
Autor:
Valerie Klein, Jaume Coll‐Font, Livia Vendramini, Donald Straney, Mathias Davids, Natalie G. Ferris, Lothar R. Schad, David E. Sosnovik, Christopher T. Nguyen, Lawrence L. Wald, Bastien Guérin
Publikováno v:
Magnetic Resonance in Medicine. 88:2242-2258
Powerful MRI gradient systems can surpass the International Electrotechnical Commission (IEC) 60601-2-33 limit for cardiac stimulation (CS), which was determined by simple electromagnetic simulations and electrode stimulation experiments. Only a few
Publikováno v:
Magnetic Resonance in Medicine. 88:1480-1483
Publikováno v:
Magnetic resonance in medicine
Purpose: Peripheral nerve stimulation (PNS) modeling has a potential role in designing and operating MRI gradient coils but requires computationally demanding simulations of electromagnetic fields and neural responses. We demonstrate compression of a
Publikováno v:
IEEE Trans Med Imaging
Peripheral Nerve Stimulation (PNS) limits the acquisition rate of Magnetic Resonance Imaging data for fast sequences employing powerful gradient systems. The PNS characteristics are currently assessed after the coil design phase in experimental stimu
Publikováno v:
Magnetic resonance in medicine
Purpose Cardiac stimulation (CS) limits to gradient coil switching speed are difficult to measure in humans; instead, current regulatory guidelines (IEC 60601-2-33) are based on animal experiments and electric field-to-dB/dt conversion factors comput
Publikováno v:
2021 International Conference on Electromagnetics in Advanced Applications (ICEAA).
Magnetic Resonance Imaging (MRI) employs magnetic gradient fields that are switched in the kHz frequency range to spatially encode the image. These time-varying magnetic fields induce electric fields (E-fields) in the patient that can become strong e