Zobrazeno 1 - 10
of 17
pro vyhledávání: '"Mathialakan Thavappiragasam"'
Publikováno v:
AIP Advances, Vol 10, Iss 11, Pp 115318-115318-14 (2020)
High power sources of electromagnetic energy often require complicated structures to support electromagnetic modes and shape electromagnetic fields to maximize the coupling of the field energy to intense relativistic electron beams. Geometric fidelit
Externí odkaz:
https://doaj.org/article/e1f59a2a4bea4d66b111bdd9410d9e3d
Publikováno v:
2022 IEEE/ACM International Workshop on Hierarchical Parallelism for Exascale Computing (HiPar).
Autor:
Scott LeGrand, Mathialakan Thavappiragasam, Jens Glaser, Andreas F. Tillack, Matthew B. Baker, Oscar Hernandez, Josh V. Vermaas, Aaron Scheinberg, David M. Rogers, Ada Sedova, Jeff Larkin, Swen Boehm
Publikováno v:
The International Journal of High Performance Computing Applications. 35:452-468
Time-to-solution for structure-based screening of massive chemical databases for COVID-19 drug discovery has been decreased by an order of magnitude, and a virtual laboratory has been deployed at scale on up to 27,612 GPUs on the Summit supercomputer
Publikováno v:
2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM).
Autor:
Russell B Davidson, Jess Woods, T Chad Effler, Mathialakan Thavappiragasam, Julie C Mitchell, Jerry M Parks, Ada Sedova
Publikováno v:
Bioinformatics. 38:3297-3298
Summary Easy-to-use, open-source, general-purpose programs for modeling a protein structure from inter-atomic distances are needed for modeling from experimental data and refinement of predicted protein structures. OpenMDlr is an open-source Python p
Autor:
Dwayne A. Elias, Jerry M. Parks, T. Chad Effler, Mathialakan Thavappiragasam, Jess Woods, Ada Sedova, Russell B. Davidson
Publikováno v:
BCB
Protein structure prediction has become increasingly popular and successful in recent years. An essential step for fragment-free, template-free methods is the generation of a final three-dimensional protein model from a set of predicted amino acid co
Publikováno v:
P3HPC@SC
2020 IEEE/ACM International Workshop on Performance, Portability and Productivity in HPC (P3HPC)
2020 IEEE/ACM International Workshop on Performance, Portability and Productivity in HPC (P3HPC)
Rapidly changing computer architectures, such as those found at high-performance computing (HPC) facilities, present the need for mini-applications (miniapps) that capture essential algorithms used in large applications to test program performance an
Autor:
Mathialakan Thavappiragasam, Oscar Hernandez, Josh V. Vermaas, Aaron Scheinberg, Ada Sedova, Andreas Koch, Duncan Poole, Jeremy C. Smith, Leonardo Solis-Vasquez, Stefano Forli, Andreas F. Tillack, Rupesh Agarwal, Scott LeGrand, Diogo Santos-Martins, Jeff Larkin
Publikováno v:
ArXiv
BCB
BCB
Protein-ligand docking is an in silico tool used to screen potential drug compounds for their ability to bind to a given protein receptor within a drug-discovery campaign. Experimental drug screening is expensive and time consuming, and it is desirab
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d7295f3947b6aac2db3e726b822acd49
https://europepmc.org/articles/PMC7359529/
https://europepmc.org/articles/PMC7359529/
Autor:
Mathialakan Thavappiragasam, Gilchan Park, Kendall G. Byler, Leighton Coates, Laura Zanetti-Polzi, Jeffrey M. Larkin, Junqi Yin, John A. Gunnels, Omar Demerdash, Loukas Petridis, Ada Sedova, Carlos Soto, Aaron Scheinberg, Mai Zahran, Scott LeGrand, Jens Glaser, Jerome Baudry, Stephan Irle, Samuel Yen-Chi Chen, Andrey Kovalevsky, Isabella Daidone, Julie C. Mitchell, Arvind Ramanathan, Connor J. Cooper, Duncan Poole, V. Q. Vuong, Diogo Santos-Martins, David M. Rogers, Shinjae Yoo, Y. Shen, Oscar Hernandez, A. Tsaris, Swen Boehm, Debsindhu Bhowmik, Travis J Lawrence, Daniel W. Kneller, Shih-Hsien Liu, Jeremy C. Smith, Line Pouchard, Matthew B. Baker, Stefano Forli, Sally R. Ellingson, Anna Pavlova, Rupesh Agarwal, Micholas Dean Smith, Atanu Acharya, James C. Gumbart, Andreas F. Tillack, John D. Eblen, Josh V. Vermaas, Jerry M. Parks
Publikováno v:
Journal of chemical information and modeling 60 (2020): 5832–5852. doi:10.1021/acs.jcim.0c01010
info:cnr-pdr/source/autori:Acharya A.; Agarwal R.; Baker M.B.; Baudry J.; Bhowmik D.; Boehm S.; Byler K.G.; Chen S.Y.; Coates L.; Cooper C.J.; Demerdash O.; Daidone I.; Eblen J.D.; Ellingson S.; Forli S.; Glaser J.; Gumbart J.C.; Gunnels J.; Hernandez O.; Irle S.; Kneller D.W.; Kovalevsky A.; Larkin J.; Lawrence T.J.; Legrand S.; Liu S.-H.; Mitchell J.C.; Park G.; Parks J.M.; Pavlova A.; Petridis L.; Poole D.; Pouchard L.; Ramanathan A.; Rogers D.M.; Santos-Martins D.; Scheinberg A.; Sedova A.; Shen Y.; Smith J.C.; Smith M.D.; Soto C.; Tsaris A.; Thavappiragasam M.; Tillack A.F.; Vermaas J.V.; Vuong V.Q.; Yin J.; Yoo S.; Zahran M.; Zanetti-Polzi L./titolo:Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19/doi:10.1021%2Facs.jcim.0c01010/rivista:Journal of chemical information and modeling/anno:2020/pagina_da:5832/pagina_a:5852/intervallo_pagine:5832–5852/volume:60
Journal of Chemical Information and Modeling
ChemRxiv
article-version (number) 1
article-version (status) pre
info:cnr-pdr/source/autori:Acharya A.; Agarwal R.; Baker M.B.; Baudry J.; Bhowmik D.; Boehm S.; Byler K.G.; Chen S.Y.; Coates L.; Cooper C.J.; Demerdash O.; Daidone I.; Eblen J.D.; Ellingson S.; Forli S.; Glaser J.; Gumbart J.C.; Gunnels J.; Hernandez O.; Irle S.; Kneller D.W.; Kovalevsky A.; Larkin J.; Lawrence T.J.; Legrand S.; Liu S.-H.; Mitchell J.C.; Park G.; Parks J.M.; Pavlova A.; Petridis L.; Poole D.; Pouchard L.; Ramanathan A.; Rogers D.M.; Santos-Martins D.; Scheinberg A.; Sedova A.; Shen Y.; Smith J.C.; Smith M.D.; Soto C.; Tsaris A.; Thavappiragasam M.; Tillack A.F.; Vermaas J.V.; Vuong V.Q.; Yin J.; Yoo S.; Zahran M.; Zanetti-Polzi L./titolo:Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19/doi:10.1021%2Facs.jcim.0c01010/rivista:Journal of chemical information and modeling/anno:2020/pagina_da:5832/pagina_a:5852/intervallo_pagine:5832–5852/volume:60
Journal of Chemical Information and Modeling
ChemRxiv
article-version (number) 1
article-version (status) pre
We present a supercomputer-driven pipeline for in silico drug discovery using enhanced sampling molecular dynamics (MD) and ensemble docking. Ensemble docking makes use of MD results by docking compound databases into representative protein binding-s
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::79326e7712c0be5402b46e8c6ef2b9fd
Publikováno v:
Journal of Coupled Systems and Multiscale Dynamics. 5:151-163