Zobrazeno 1 - 10
of 32
pro vyhledávání: '"Matha, Marcel"'
Autor:
Matha, Marcel, Morsbach, Christian
Publikováno v:
Physics of Fluids, Vol.36, Issue 2, 2024
Aerospace design is increasingly incorporating Design Under Uncertainty based approaches to lead to more robust and reliable optimal designs. These approaches require dependable estimates of uncertainty in simulations for their success. The key contr
Externí odkaz:
http://arxiv.org/abs/2311.01355
Autor:
Matha, Marcel, Morsbach, Christian
To achieve virtual certification for industrial design, quantifying the uncertainties in simulation-driven processes is crucial. We discuss a physics-constrained approach to account for epistemic uncertainty of turbulence models. In order to eliminat
Externí odkaz:
http://arxiv.org/abs/2306.13370
Autor:
Matha, Marcel, Morsbach, Christian
Publikováno v:
Physics of Fluids, Vol.35, Issue 6, 2023
The limitations of turbulence closure models in the context of Reynolds-averaged NavierStokes (RANS) simulations play a significant part in contributing to the uncertainty of Computational Fluid Dynamics (CFD). Perturbing the spectral representation
Externí odkaz:
http://arxiv.org/abs/2303.06149
Autor:
Matha, Marcel, Kucharczyk, Karsten
White paper: The aim of this work is to apply and analyze machine learning methods for uncertainty quantification of turbulence models. In this work we investigate the classical and data-driven variants of the eigenspace perturbation method. This met
Externí odkaz:
http://arxiv.org/abs/2210.16358
Publikováno v:
Computers & Fluids, 255, 2023, 105837
In order to achieve a virtual certification process and robust designs for turbomachinery, the uncertainty bounds for Computational Fluid Dynamics have to be known. The formulation of turbulence closure models implies a major source of the overall un
Externí odkaz:
http://arxiv.org/abs/2210.00002
Autor:
Matha, Marcel, Morsbach, Christian
In order to achieve a more virtual design and certification process of jet engines in aviation industry, the uncertainty bounds for computational fluid dynamics have to be known. This work shows the application of a machine learning methodology to qu
Externí odkaz:
http://arxiv.org/abs/2202.01560
Publikováno v:
In Computers and Fluids 15 April 2023 255
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Hilfer, Michael, Klein, Christian, Schroll, Michael, Willert, Christian E., Klinner, Joachim, Müller, Martin, Matha, Marcel, Tabassum, Sadiya, Morsbach, Christian, Brakmann, R. G.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______1640::0aea55912a579874406d0eb465bc910a
https://elib.dlr.de/193928/
https://elib.dlr.de/193928/