Zobrazeno 1 - 10
of 56
pro vyhledávání: '"Mateusz Maciejewski"'
Autor:
Åsa K. Hedman, Eitan Winter, Niyaz Yoosuf, Yair Benita, Louise Berg, Boel Brynedal, Lasse Folkersen, Lars Klareskog, Mateusz Maciejewski, Alexandra Sirota-Madi, Yael Spector, Daniel Ziemek, Leonid Padyukov, Shai S. Shen-Orr, Scott A. Jelinsky
Publikováno v:
Scientific Reports, Vol 13, Iss 1, Pp 1-11 (2023)
Abstract Rheumatoid arthritis (RA) is an autoimmune disease characterized by systemic inflammation and is mediated by multiple immune cell types. In this work, we aimed to determine the relevance of changes in cell proportions in peripheral blood mon
Externí odkaz:
https://doaj.org/article/015c0a27681d422fa2a149b768171efd
Autor:
Małgorzata Koziarska-Rościszewska, Patrycja Iwan, Grzegorz Kardas, Paweł Kozarzewski, Jacek Rysz, Mateusz Maciejewski
Publikováno v:
Family Medicine & Primary Care Review, Vol 24, Iss 2, Pp 134-138 (2022)
Externí odkaz:
https://doaj.org/article/959f328115934674b5afc798fb75c319
Autor:
Boel Brynedal, Niyaz Yoosuf, Tinna Bjorg Ulfarsdottir, Daniel Ziemek, Mateusz Maciejewski, Lasse Folkersen, Helga Westerlind, Malin Müller, Peter Sahlström, Scott A. Jelinsky, Aase Hensvold, Leonid Padyukov, Nancy Vivar Pomiano, Anca Catrina, Lars Klareskog, Louise Berg
Publikováno v:
Frontiers in Medicine, Vol 10 (2023)
BackgroundMethotrexate (MTX) is the first line treatment for rheumatoid arthritis (RA), but failure of satisfying treatment response occurs in a significant proportion of patients. Here we present a longitudinal multi-omics study aimed at detecting m
Externí odkaz:
https://doaj.org/article/75fb2c0635c442d4bc63cec8b8b58bca
Autor:
Helga Westerlind, Mateusz Maciejewski, Thomas Frisell, Scott A Jelinsky, Daniel Ziemek, Johan Askling
Publikováno v:
ACR Open Rheumatology, Vol 3, Iss 7, Pp 457-463 (2021)
Objective The objectives of this study were to assess the 1‐year persistence to methotrexate (MTX) initiated as the first ever conventional synthetic disease‐modifying antirheumatic drug in new‐onset rheumatoid arthritis (RA) and to investigate
Externí odkaz:
https://doaj.org/article/304b99c5d174450f912549a75cca53e6
Autor:
Tianyun Liu, Lichy Han, Mera Tilley, Lovisa Afzelius, Mateusz Maciejewski, Scott Jelinsky, Chao Tian, Matthew McIntyre, the 23andMe Research Team, Nan Bing, Kenneth Hung, Russ B. Altman
Publikováno v:
BMC Gastroenterology, Vol 21, Iss 1, Pp 1-11 (2021)
Abstract Background Defining clinical phenotypes provides opportunities for new diagnostics and may provide insights into early intervention and disease prevention. There is increasing evidence that patient-derived health data may contain information
Externí odkaz:
https://doaj.org/article/c3ccf1a423d24b01bd3f9a121dd5a241
Autor:
Mateusz Maciejewski, Caroline Sands, Nisha Nair, Stephanie Ling, Suzanne Verstappen, Kimme Hyrich, Anne Barton, Daniel Ziemek, Matthew R. Lewis, Darren Plant
Publikováno v:
Scientific Reports, Vol 11, Iss 1, Pp 1-6 (2021)
Abstract Methotrexate (MTX) is a common first-line treatment for new-onset rheumatoid arthritis (RA). However, MTX is ineffective for 30–40% of patients and there is no way to know which patients might benefit. Here, we built statistical models bas
Externí odkaz:
https://doaj.org/article/15aaa01033fa4c62b85b8be3ce377903
Autor:
Aaron M. Smith, Jonathan R. Walsh, John Long, Craig B. Davis, Peter Henstock, Martin R. Hodge, Mateusz Maciejewski, Xinmeng Jasmine Mu, Stephen Ra, Shanrong Zhao, Daniel Ziemek, Charles K. Fisher
Publikováno v:
BMC Bioinformatics, Vol 21, Iss 1, Pp 1-18 (2020)
Abstract Background The ability to confidently predict health outcomes from gene expression would catalyze a revolution in molecular diagnostics. Yet, the goal of developing actionable, robust, and reproducible predictive signatures of phenotypes suc
Externí odkaz:
https://doaj.org/article/4a80ce019b8d4e889e86cf97f5025413
Autor:
Mateusz Maciejewski, Eugen Lounkine, Steven Whitebread, Pierre Farmer, William DuMouchel, Brian K Shoichet, Laszlo Urban
Publikováno v:
eLife, Vol 6 (2017)
The Food and Drug Administration Adverse Event Reporting System (FAERS) remains the primary source for post-marketing pharmacovigilance. The system is largely un-curated, unstandardized, and lacks a method for linking drugs to the chemical structures
Externí odkaz:
https://doaj.org/article/093147f8a3444b44bec422d9105175a0
Autor:
Nisha Nair, Mateusz Maciejewski, Stephanie Ling, Daniel Ziemek, Darren Plant, Matthew R. Lewis, Suzanne M M Verstappen, Caroline Sands, Kimme L. Hyrich, Anne Barton
Publikováno v:
Scientific Reports, Vol 11, Iss 1, Pp 1-6 (2021)
Scientific Reports
Maciejewski, M, Sands, C, Nair, N, Ling, S, Verstappen, S, Hyrich, K, Barton, A, Ziemek, D, Lewis, M R & Plant, D 2021, ' Prediction of response of methotrexate in patients with rheumatoid arthritis using serum lipidomics ', Scientific Reports, vol. 11, no. 1, 7266 . https://doi.org/10.1038/s41598-021-86729-7
Scientific Reports
Maciejewski, M, Sands, C, Nair, N, Ling, S, Verstappen, S, Hyrich, K, Barton, A, Ziemek, D, Lewis, M R & Plant, D 2021, ' Prediction of response of methotrexate in patients with rheumatoid arthritis using serum lipidomics ', Scientific Reports, vol. 11, no. 1, 7266 . https://doi.org/10.1038/s41598-021-86729-7
Methotrexate (MTX) is a common first-line treatment for new-onset rheumatoid arthritis (RA). However, MTX is ineffective for 30–40% of patients and there is no way to know which patients might benefit. Here, we built statistical models based on ser
BackgroundAtopic Dermatitis (AD) is a persistent inflammatory disease of the skin to which a few novel treatment options have recently become available. Multiple published datasets, from RNA sequencing (RNA-seq) and microarray experiments performed o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::71e4ba29eb5f7c54ca23241386af6cc4
https://doi.org/10.1101/2022.05.24.493180
https://doi.org/10.1101/2022.05.24.493180