Zobrazeno 1 - 10
of 34
pro vyhledávání: '"Mateusz Kwaśnicki"'
Autor:
Mateusz Kwaśnicki
Publikováno v:
Calculus of Variations and Partial Differential Equations. 61
We identify a class of non-local integro-differential operators $K$ in $\mathbb{R}$ with Dirichlet-to-Neumann maps in the half-plane $\mathbb{R} \times (0, \infty)$ for appropriate elliptic operators $L$. More precisely, we prove a bijective correspo
Autor:
Michael Rose, Sanita Reinsone, Maksym Andriushchenko, Marcin Bartosiak, Anna Bobak, Luke Drury, Marten Düring, Inês Figueira, Elīna Gailīte, Iryna Gozhyk, Lucas Guimarães Abreu, Irene Gutierrez, Oleksandra Ivashchenko, Kris Van Heuckelom, Justine Jaudzema, Katarina Jurikova, Anna Klos, Johannes Knörzer, Ekaterina Kutafina, Mateusz Kwaśnicki, Håkan Lane, Ilze Ļaksa-Timinska, Brokoslaw Laschowski, Annina Lattu, Megi Maci, Katri Mäkinen-Rostedt, Maciej Maryl, Maarten van Meerbeek, Olivier Morin, Valentina Mosienko, Albert Palou Vilar, Karen De Pauw, Marina Pelepets, Matiss Reinfelds, Cristina Rujan, Zhanna Santybayeva, Anya Skatova, Martin Vita, Ieva Weaver, Magdalena Wnuk, Robert Beckett
There was an immediate ad-hoc response of the international scientific community to help scholars from universities affected by Russia's war in Ukraine. Official government-backed funding programmes later allowed the ad-hoc help offers to be sustaina
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b35f4f790b4e232e6f4749e25606cd9e
https://lirias.kuleuven.be/handle/20.500.12942/709984
https://lirias.kuleuven.be/handle/20.500.12942/709984
Autor:
Mateusz Kwaśnicki
Publikováno v:
Annales Henri Lebesgue. 3:1389-1397
We prove that the law of a random walk $X_n$ is determined by the one-dimensional distributions of $\max(X_n, 0)$ for $n = 1, 2, \ldots$, as conjectured recently by Loic Chaumont and Ron Doney. Equivalently, the law of $X_n$ is determined by its upwa
We study axiomatic foundations for different classes of constant-function automated market makers (CFMMs). We focus particularly on separability and on different invariance properties under scaling. Our main results are an axiomatic characterization
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::53ce74a184e0b10f04c35d1af064692f
Publikováno v:
A Lifetime of Excursions Through Random Walks and Lévy Processes ISBN: 9783030833084
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::6f7bdb4fbb26396c1b1e4f4a2d1192b1
https://doi.org/10.1007/978-3-030-83309-1_16
https://doi.org/10.1007/978-3-030-83309-1_16
Publikováno v:
Journal of Spectral Theory. 9:127-135
Publikováno v:
Journal of Spectral Theory. 8:165-189
We study supercontractivity and hypercontractivity of Markov semigroups obtained via ground state transformation of non-local Schrodinger operators based on generators of symmet- ric jump-paring Levy processes with Kato-class confining potentials. Th
Autor:
Mateusz Kwaśnicki, Tomasz Grzywny
Publikováno v:
Stochastic Processes and their Applications. 128:1-38
In the first part of this article, we prove two-sided estimates of hitting probabilities of balls, the potential kernel and the Green function for a ball for general isotropic unimodal L\'evy processes. Our bounds are sharp under the absence of the G
Autor:
Mateusz Kwaśnicki, Virginia Kiryakova
Publikováno v:
Fractional Calculus and Applied Analysis. 20:1-6
Publikováno v:
Journal of the London Mathematical Society. 95:500-518
We describe a highly efficient numerical scheme for finding two-sided bounds for the eigenvalues of the fractional Laplace operator (−Δ)α/2 in the unit ball D⊂Rd, with a Dirichlet condition in the complement of D. The standard Rayleigh–Ritz v