Zobrazeno 1 - 10
of 154
pro vyhledávání: '"Mateu, Joan"'
In this paper we study properties of a variant of the $1/2$-caloric capacity, called $1/2$-symmetric caloric capacity. The latter is associated simultaneously with the $1/2$-fractional heat equation and its conjugate. We establish its semi-additivity
Externí odkaz:
http://arxiv.org/abs/2405.01195
In this paper, we address for the 2D Euler equations the existence of rigid time periodic solutions close to stationary radial vortices of type $f_0(|x|){\bf 1}_{\mathbb{D}}(x)$, with $\mathbb{D}$ the unit disc and $f_0$ being a strictly monotonic pr
Externí odkaz:
http://arxiv.org/abs/2302.01279
In this paper we consider a general class of anisotropic energies in three dimensions and give a complete characterisation of their minimisers. We show that, depending on the Fourier transform of the interaction potential, the minimiser is either the
Externí odkaz:
http://arxiv.org/abs/2210.06797
Autor:
Mateu, Joan, Prat, Laura
In this paper we study removable singularities for solutions of the fractional heat equation in time varying domains. We introduce associated capacities and we study some of its metric and geometric properties.
Externí odkaz:
http://arxiv.org/abs/2205.02518
In this paper we characterise the minimiser for a class of nonlocal perturbations of the Coulomb energy. We show that the minimiser is the normalised characteristic function of an ellipsoid, under the assumption that the perturbation kernel has the s
Externí odkaz:
http://arxiv.org/abs/2112.14136
In this paper we study removable singularities for regular $(1,1/2)$-Lipschitz solutions of the heat equation in time varying domains. We introduce an associated Lipschitz caloric capacity and we study its metric and geometric properties and the conn
Externí odkaz:
http://arxiv.org/abs/2005.03397
This paper aims to study time periodic solutions for 3D inviscid quasi-geostrophic model. We show the existence of non trivial rotating patches by suitable perturbation of stationary solutions given by generic revolution shapes around the vertical ax
Externí odkaz:
http://arxiv.org/abs/2004.01644
Autor:
Mateu, Joan, Prat, Laura
We construct an example of a purely unrectifiable measure $\mu$ in $\mathbb{R}^d$ for which the singular integrals associated to the kernels $\displaystyle{K(x)=\frac{P_{2k+1}(x)}{|x|^{2k+d}}}$, with $k\geq 1$ and $P_{2k+1}$ a homogeneous harmonic po
Externí odkaz:
http://arxiv.org/abs/1912.11257
Publikováno v:
In Advances in Mathematics 1 December 2023 434
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.