Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Mastropietro, Daniel"'
Inspired by the Fleming-Viot stochastic process, we propose a parallel implementation of variational quantum algorithms with the aim of helping the algorithm get out of barren plateaus, where optimization direction is unclear. In the Fleming-Viot tra
Externí odkaz:
http://arxiv.org/abs/2311.18090
Publikováno v:
In Computational Materials Science 15 February 2021 188
Autor:
Mastropietro, Daniel G.
Thesis (M.S.)--University of Wisconsin--Madison, 2000.
Typescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 74-75).
Typescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 74-75).
Externí odkaz:
http://catalog.hathitrust.org/api/volumes/oclc/46591104.html
Conference
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
HAL
à paraître
15th European Workshop on Reinforcement Learning (EWRL 2022)
15th European Workshop on Reinforcement Learning (EWRL 2022), Sep 2022, Milano, Italy
à paraître
15th European Workshop on Reinforcement Learning (EWRL 2022)
15th European Workshop on Reinforcement Learning (EWRL 2022), Sep 2022, Milano, Italy
International audience; We consider reinforcement learning control problems under the average reward criterion in which non-zero rewards are both sparse and rare, that is, they occur in very few states and have a very small steady-state probability.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::7b5c752d5597bb695bf794e40481a8a5
https://ut3-toulouseinp.hal.science/hal-03772025
https://ut3-toulouseinp.hal.science/hal-03772025