Zobrazeno 1 - 10
of 110
pro vyhledávání: '"Mastrolia, Paolo"'
We provide optimal pinching results on closed Einstein manifolds with positive Yamabe invariant in any dimension, extending the optimal bound for the scalar curvature due to Gursky and LeBrun in dimension four. We also improve the known bounds of the
Externí odkaz:
http://arxiv.org/abs/2403.08647
In this paper we prove new rigidity results for complete, possibly non-compact, critical metrics of the quadratic curvature functionals $\mathfrak{S}^2 = \int R_g^{2} dV_g$. We show that critical metrics $(M^n, g)$ with finite energy are always scala
Externí odkaz:
http://arxiv.org/abs/2303.08025
The aim of this paper is to prove two results concerning the rigidity of complete, immersed, orientable, stable minimal hypersurfaces: we show that they are hyperplane in $\mathbb{R}^4$, while they do not exist in positively curved closed Riemannian
Externí odkaz:
http://arxiv.org/abs/2209.10500
In this paper we provide new rigidity results for four-dimensional Riemannian manifolds and their twistor spaces.In particular, using the moving frame method, we prove that $\mathbb{CP}^3$ is the only twistor space whose Bochner tensor is parallel; m
Externí odkaz:
http://arxiv.org/abs/2206.14865
In this paper, using special metric deformations introduced by Aubin, we construct Riemannian metrics satisfying non-vanishing conditions concerning the Weyl tensor, on every compact manifold. In particular, in dimension four, we show that there are
Externí odkaz:
http://arxiv.org/abs/2206.11016
In this paper we prove new rigidity results for complete, possibly non-compact, critical metrics of the quadratic curvature functionals $\mathfrak{F}^{2}_t = \int |\operatorname{Ric}_g|^{2} dV_g + t \int R^{2}_g dV_g$, $t\in\mathbb{R}$, and $\mathfra
Externí odkaz:
http://arxiv.org/abs/2110.02683
Publikováno v:
In Journal de mathématiques pures et appliquées
In this paper we study the twistor space $Z$ of an oriented Riemannian four-manifold $M$ using the moving frame approach, focusing, in particular, on the Einstein, non-self-dual setting. We prove that any general first-order linear condition on the a
Externí odkaz:
http://arxiv.org/abs/2010.00323
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.