Zobrazeno 1 - 10
of 21
pro vyhledávání: '"Massimiliano Marangio"'
Publikováno v:
Discrete Mathematics Letters, Vol 12, Pp 118-121 (2023)
Externí odkaz:
https://doaj.org/article/99f29db0ab784d54b054320c08f93591
Publikováno v:
Discrete Mathematics Letters, Vol 10, Pp 1-8 (2022)
Externí odkaz:
https://doaj.org/article/fef16f0364de42e8a074a9f753547fdd
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 39, Iss 3, Pp 689-703 (2019)
A (graph) property 𝒫 is a class of simple finite graphs closed under isomorphisms. In this paper we consider generalizations of sum list colorings of graphs with respect to properties 𝒫.
Publikováno v:
Discussiones Mathematicae Graph Theory.
Publikováno v:
Graphs and Combinatorics. 34:1539-1551
The chromatic edge stability number $$ es _{\chi }(G)$$ of a graph G is the minimum number of edges whose removal results in a graph $$H \subseteq G$$ with chromatic number $$\chi (H) = \chi (G) - 1$$ . The chromatic bondage number $$\rho (G)$$ of G
Publikováno v:
Electronic Notes in Discrete Mathematics. 63:49-58
A simple graph G = ( V , E ) is called L-colorable if there is a proper coloring c of the vertices with c ( v ) ∈ L ( v ) for all v ∈ V where L ( v ) is an assignment of colors to v. A function f : V → N is called a choice function of G if G is
Publikováno v:
Discrete Mathematics. 344:112391
Let G = ( V , E ) be a simple graph and for every vertex v ∈ V let L ( v ) be a set (list) of available colors. The graph G is called L -colorable if there is a proper coloring φ of the vertices with φ ( v ) ∈ L ( v ) for all v ∈ V . A functi
Publikováno v:
Discrete Mathematics. 340:2633-2640
Let G = ( V E ) be a simple graph and for every vertex v ∈ V let L ( v ) be a set (list) of available colors. G is called L -colorable if there is a proper coloring φ of the vertices with φ ( v ) ∈ L ( v ) for all v ∈ V . A function f : V →
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 36, Iss 3, Pp 709-722 (2016)
Let G = (V,E) be a simple graph and for every edge e ∈ E let L(e) be a set (list) of available colors. The graph G is called L-edge colorable if there is a proper edge coloring c of G with c(e) ∈ L(e) for all e ∈ E. A function f : E → ℕ is
Publikováno v:
Discrete Mathematics. 338:1722-1729
Let r , s ? N , r ? s , and P and Q be two additive and hereditary graph properties. A ( P , Q ) -total ( r , s ) -coloring of a?graph G = ( V , E ) is a?coloring of the vertices and edges of G by s -element subsets of Z r such that for each color i