Zobrazeno 1 - 10
of 59
pro vyhledávání: '"Massimiliano D. Rosini"'
Publikováno v:
Nonlinear Differential Equations and Applications NoDEA. 28
We consider a macroscopic two-phase transition model for vehicular traffic flow subject to a point constraint on the density flux. The two phases correspond to light and heavy traffic and their dynamics are described respectively by the Lighthill–W
Autor:
Massimiliano D. Rosini
Publikováno v:
Order, Disorder and Criticality
In this chapter we develop and study microscopic and macroscopic models for car and pedestrian flows. After a general introduction on the basic features of the flows under consideration, we develop our models. We first introduce at the microscopic le
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::909414270a44ffd7cac56abb3b97df8c
https://hal.archives-ouvertes.fr/hal-02491071
https://hal.archives-ouvertes.fr/hal-02491071
Publikováno v:
Springer Proceedings in Mathematics & Statistics ISBN: 9783030460785
In the context of road traffic modeling we consider a scalar hyperbolic conservation law with the flux (fundamental diagram) which is discontinuous at \(x=0\), featuring variable velocity limitation. The flow maximization criterion for selection of a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::eef86cbfd2a102f7c6d6ce3e4120b284
https://doi.org/10.1007/978-3-030-46079-2_7
https://doi.org/10.1007/978-3-030-46079-2_7
Publikováno v:
Journal de Mathématiques Pures et Appliquées. 116:309-346
We introduce and analyze a class of models with nonlocal point constraints for traffic flow through bottlenecks, such as exits in the context of pedestrians traffic and reduction of lanes on a road under construction in vehicular traffic. Constraints
Publikováno v:
Mathematical Methods in the Applied Sciences. 40:6623-6641
Publikováno v:
Networks & Heterogeneous Media. 12:339-370
In this paper we consider a scalar parabolic equation on a star graph; the model is quite general but what we have in mind is the description of traffic flows at a crossroad. In particular, we do not necessarily require the continuity of the unknown
Autor:
Massimiliano D. Rosini, Andrea Corli
In this paper we propose a model, based on the strictly hyperbolic system of isothermal Euler equations , for the gas flow in a straight pipe with a valve. We are then faced with an initial value problem with coupling conditions at the valve position
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::cbf49f80f1c2333714a42b7bd338ac71
https://hal.archives-ouvertes.fr/hal-02099052/file/CR_2019-04-13.pdf
https://hal.archives-ouvertes.fr/hal-02099052/file/CR_2019-04-13.pdf
Autor:
Massimiliano D. Rosini
In this paper we study \(2\times 2\) systems of conservation laws with discontinuous fluxes arising in vehicular traffic modeling. The main goal is to introduce an appropriate notion of solution. To this aim we consider physically reasonable microsco
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e7470d3a69c9e82d69e1da28e1e504b8
https://hal.archives-ouvertes.fr/hal-02297330v2
https://hal.archives-ouvertes.fr/hal-02297330v2
Representation of capacity drop at a road merge via point constraints in a first order traffic model
Publikováno v:
ESAIM: Mathematical Modelling and Numerical Analysis
ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2019, 53 (1), pp.1-34. ⟨10.1051/m2an/2019002⟩
ESAIM: Mathematical Modelling and Numerical Analysis, 2019, 53 (1), pp.1-34. ⟨10.1051/m2an/2019002⟩
ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2019, 53 (1), pp.1-34. ⟨10.1051/m2an/2019002⟩
ESAIM: Mathematical Modelling and Numerical Analysis, 2019, 53 (1), pp.1-34. ⟨10.1051/m2an/2019002⟩
We reproduce the capacity drop phenomenon at a road merge by implementing a non-local point constraint at the junction in a first order traffic model. We call capacity drop the situation in which the outflow through the junction is lower than the rec
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::eba19bcb5df0307f93b4b058a3951873
https://hal.archives-ouvertes.fr/hal-02922756
https://hal.archives-ouvertes.fr/hal-02922756
We consider wave-front tracking approximate solutions to a two-phase transition model for vehicular traffic. We construct an explicit example showing that the total variation in space of the solution blows up in finite time even for an initial datum
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0cf02f0a7d294f826ce4154c219da1c4
https://hal.archives-ouvertes.fr/hal-02306582
https://hal.archives-ouvertes.fr/hal-02306582