Zobrazeno 1 - 10
of 26
pro vyhledávání: '"Massey, JC"'
An artificial neural network (ANN) is trained on moderate or intense low- oxygen dilution (MILD) combustion to predict the sub-grid filtered density function (FDF) in large eddy simulation (LES). For wide usability, a new quantity ψ is calculated by
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::396c1fe3866d5c37f8815c16590363f1
Simulations of two cases in a novel multi-regime burner configuration are undertaken using a presumed joint probability density function (PDF) approach with tabulated chemistry. The flame conditions are varied by changing the central jet equivalence
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::057d0343ab94be8de13fc0cb421f225b
https://www.repository.cam.ac.uk/handle/1810/342088
https://www.repository.cam.ac.uk/handle/1810/342088
The flame in a gas turbine model combustor close to blow-off is studied using large eddy simulation with the objective of investigating the sensitivity of including different heat loss effects within the modelling. A presumed joint probability densit
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f135014f8d929eb9cd0a1d0d431faf5a
https://www.repository.cam.ac.uk/handle/1810/325768
https://www.repository.cam.ac.uk/handle/1810/325768
A swirl-stabilised flame close to blow-off conditions in a gas turbine model combustor is investigated using large eddy simulation. The sub-grid combustion is modelled using a presumed probability density function approach along with flamelets. Good
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c0da7f2166beb9117454443dac738ec2
https://www.repository.cam.ac.uk/handle/1810/289849
https://www.repository.cam.ac.uk/handle/1810/289849
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Large eddy simulation (LES) has the potential to predict turbulent combustion phenomena in modern practical combustors. As errors from sub-grid models may be comparable to the numerical errors in the LES approach, mitigating the impact of the numeric
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::29f59f671ddd66b3ab91b4c92c2a2cb2
https://www.repository.cam.ac.uk/handle/1810/349443
https://www.repository.cam.ac.uk/handle/1810/349443
Autor:
Dimitrios P. Kallifronas, James C. Massey, Zhi X. Chen, Ramanarayanan Balachandran, Nedunchezhian Swaminathan
The response of a lean premixed flame subjected to acoustic perturbations is a complex phenomenon that depends highly on the type of flame and the operating conditions. Swirl introduces additional complexities due to the azimuthal component of the fl
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4ec636f238524e03374a6f415efea960
https://www.repository.cam.ac.uk/handle/1810/348456
https://www.repository.cam.ac.uk/handle/1810/348456
Publikováno v:
BioRxiv : the preprint server for biology [bioRxiv] 2024 Apr 11. Date of Electronic Publication: 2024 Apr 11.
Autor:
Neumann KD; Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, United States.; Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States., Seshadri V; Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States., Thompson XD; Department of Kinesiology, University of Virginia, Charlottesville, VA, United States., Broshek DK; Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, United States., Druzgal J; Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States., Massey JC; Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States., Newman B; Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States., Reyes J; Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States., Simpson SR; Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, United States., McCauley KS; Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States., Patrie J; Department of Public Health Sciences, University of Virginia, Charlottesville, VA, United States., Stone JR; Department of Public Health Sciences, University of Virginia, Charlottesville, VA, United States., Kundu BK; Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States.; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States., Resch JE; Department of Kinesiology, University of Virginia, Charlottesville, VA, United States.
Publikováno v:
Frontiers in neurology [Front Neurol] 2023 Mar 24; Vol. 14, pp. 1127708. Date of Electronic Publication: 2023 Mar 24 (Print Publication: 2023).