Zobrazeno 1 - 10
of 72
pro vyhledávání: '"Massart, Daniel"'
Publikováno v:
Comptes Rendus. Mathématique, Vol 359, Iss 1, Pp 65-70 (2021)
We study a volume related quantity $\mathrm{KVol}$ on the stratum ${\mathcal{H}(2)}$ of translation surfaces of genus $2$, with one conical point. We provide an explicit sequence $L(n, n)$ of surfaces such that $\mathrm{KVol}(L(n, n)) \rightarrow 2$
Externí odkaz:
https://doaj.org/article/97360db350d345f4810e0612388d71f2
We study the function $$\mbox{KVol} : (X,\omega)\mapsto \mbox{Vol} (X,\omega) \sup_{\alpha,\beta} \frac{\mbox{Int} (\alpha,\beta)}{l_g (\alpha) l_g (\beta)}$$ defined on the moduli spaces of translation surfaces. More precisely, let $\mathcal T_n$ be
Externí odkaz:
http://arxiv.org/abs/2110.14235
Autor:
Massart, Daniel
We review the different notions about translation surfaces which are necessary to understand McMullen's classification of $GL_2^+(\mathbb{R})$-orbit closures in genus two. In Section 2 we recall the different definitions of a translation surface, in
Externí odkaz:
http://arxiv.org/abs/2107.11581
Publikováno v:
Rev. Integr. Temas Mat. 40 (2022), no. 1, 25-57
This paper considers a multi-patch model, where each patch follows a logistic law, and patches are coupled by asymmetrical migration terms. First, in the case of perfect mixing, i.e when the migration rate tends to infinity, the total population foll
Externí odkaz:
http://arxiv.org/abs/2103.13144
Publikováno v:
Comptes Rendus. Math\'ematique, Tome 359 (2021) no. 1, pp. 65-70
We study the quantity $\mbox{KVol}$ defined as the supremum, over all pairs of closed curves, of their algebraic intersection, divided by the product of their lengths, times the area of the surface. The surfaces we consider live in the stratum $\math
Externí odkaz:
http://arxiv.org/abs/2007.11995
Publikováno v:
Bull. Soc. Math. France 149 (2021), no. 4, 613-640
The setting is a square-tiled surface X. We study the quantity KVol, defined as the supremum over all pairs of closed curves, of their algebraic intersection divided by the product of their length, times the volume of X (so as to make it scaling-inva
Externí odkaz:
http://arxiv.org/abs/2007.10847
Autor:
Babenko, Ivan, Massart, Daniel
We define Dirichlet type series associated with homology length spectra of Riemannian, or Finsler, manifolds, or polyhedra, and investigate some of their analytical properties. As a consequence we obtain an inequality analogous to Gromov's classical
Externí odkaz:
http://arxiv.org/abs/1612.01672
Autor:
Massart, Daniel
On passe en revue les résultats de l'auteur sur la fonction $\beta$ de Mather.
Externí odkaz:
http://tel.archives-ouvertes.fr/tel-00560946
http://tel.archives-ouvertes.fr/docs/00/56/09/46/PDF/hab_root.pdf
http://tel.archives-ouvertes.fr/docs/00/56/09/46/PDF/hab_root.pdf
Autor:
Massart, Daniel, Parlier, Hugo
On a surface with a Finsler metric, we investigate the asymptotic growth of the number of closed geodesics of length less than $L$ which minimize length among all geodesic multicurves in the same homology class. An important class of surfaces which a
Externí odkaz:
http://arxiv.org/abs/1406.5432
Autor:
Massart, Daniel
We prove that if a time-periodic Tonelli Lagrangian on a closed manifold $M$ satisfies a strong version of the Differentiability Problem for Mather's $\beta$-function, then the Legendre transforms of rational homology classes are dense in the first c
Externí odkaz:
http://arxiv.org/abs/1304.0868