Zobrazeno 1 - 10
of 2 777
pro vyhledávání: '"Mass-preserving"'
The single particle model (SPM) is a reduced electrochemical model that holds promise for applications in battery management systems due to its ability to accurately capture battery dynamics; however, the numerical discretization of the SPM requires
Externí odkaz:
http://arxiv.org/abs/2410.08187
We give a new proof for the existence of spherically symmetric steady states to the Vlasov-Poisson system, following a strategy that has been used successfully to approximate axially symmetric solutions numerically, both to the Vlasov-Poisson system
Externí odkaz:
http://arxiv.org/abs/2412.01544
As one kind important phase field equations, Cahn-Hilliard equations contain spatial high order derivatives, strong nonlinearities, and even singularities. When using the physics informed neural network (PINN) to simulate the long time evolution, it
Externí odkaz:
http://arxiv.org/abs/2404.18054
$n$-Dimensional Volumetric Stretch Energy Minimization for Volume-/Mass-Preserving Parameterizations
In this paper, we develop an $n$ dimensional volumetric stretch energy ($n$-VSE) functional for the volume-/mass-preserving parameterization of the $n$-manifolds topologically equivalent to $n$-ball. The $n$-VSE has a lower bound and equal to it if a
Externí odkaz:
http://arxiv.org/abs/2402.00380
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena April 2024 181
Autor:
Del Nin, Giacomo, Perales, Raquel
We prove that given an $n$-dimensional integral current space and a $1$-Lipschitz map, from this space onto the $n$-dimensional Euclidean ball, that preserves the mass of the current and is injective on the boundary, then the map has to be an isometr
Externí odkaz:
http://arxiv.org/abs/2210.06406
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Del Nin, Giacomo, Perales, Raquel
Publikováno v:
In Journal of Mathematical Analysis and Applications 1 October 2023 526(1)
A mass-preserving two-step Lagrange-Galerkin scheme of second order in time for convection-diffusion problems is presented, and convergence with optimal error estimates is proved in the framework of $L^2$-theory. The introduced scheme maintains the a
Externí odkaz:
http://arxiv.org/abs/2107.10019