Zobrazeno 1 - 10
of 29
pro vyhledávání: '"Masqué, Jaime Muñoz"'
Publikováno v:
Linear and Multilinear Algebra vol 67, issue 5 (2019), pages 939-952
Let $\mathbb{F}$ be a field of characteristic $\neq 2$ and $3$, let $V$ be a $\mathbb{F}$-vector space of dimension $6$, and let $\Omega \in \wedge ^2V^\ast $ be a non-degenerate form. A system of generators for polynomial invariant functions under t
Externí odkaz:
http://arxiv.org/abs/2412.03135
The theory of gauge fields in Theoretical Physics poses several mathematical problems of interest in Differential Geometry and in Field Theory. Below we tackle one of these problems: The existence of a finite system of generators of gauge-invariant L
Externí odkaz:
http://arxiv.org/abs/1903.00443
Publikováno v:
Quaestiones Mathematicae, volume 45, issue 7 (2022). Pages 1145-1152
Let $M$ be a smooth manifold of dimension $2n$, and let $O_{M}$ be the dense open subbundle in $\wedge^{2}T^{\ast}M$ of $2$-covectors of maximal rank. The algebra of $\operatorname*{Diff}M$-invariant smooth functions of first order on $O_{M}$ is prov
Externí odkaz:
http://arxiv.org/abs/1812.07284
The notion of type of a differential 2-form in four variables is introduced and for 2-forms of type < 4, local normal models are given. If the type of a 2-form $\Omega$ is 4, then the equivalence under diffeomorphisms of $\Omega$ is reduced to the eq
Externí odkaz:
http://arxiv.org/abs/1802.03196
Let $M$ be a connected smooth manifold, let $\operatorname{Aut}(p)$ be the group automorphisms of the bundle $p\colon \mathbb{R}\times M\to \mathbb{R}$, and let $q\colon J^1(\mathbb{R},M)\times \mathbb{R\to }J^1(\mathbb{R},M)$ be the canonical projec
Externí odkaz:
http://arxiv.org/abs/1707.01494
A first-order Lagrangian $L^\nabla $ variationally equivalent to the second-order Einstein-Hilbert Lagrangian is introduced. Such a Lagrangian depends on a symmetric linear connection, but the dependence is covariant under diffeomorphisms. The variat
Externí odkaz:
http://arxiv.org/abs/1306.1123
Let $C\to M$ be the bundle of connections of a principal bundle on $M$. The solutions to Hamilton-Cartan equations for a gauge-invariant Lagrangian density $\Lambda $ on $C$ satisfying a weak condition of regularity, are shown to admit an affine fibr
Externí odkaz:
http://arxiv.org/abs/1004.4923
Publikováno v:
SIGMA 5 (2009), 063, 7 pages
Two examples of $\mathrm{Diff}^+S^1$-invariant closed two-forms obtained from forms on jet bundles, which does not admit equivariant moment maps are presented. The corresponding cohomological obstruction is computed and shown to coincide with a nontr
Externí odkaz:
http://arxiv.org/abs/0906.2988
Pontryagin forms on $(4k-2)$-manifolds and symplectic structures on the spaces of Riemannian metrics
The Pontryagin forms on 1-jet bundle of Riemannian metrics, are shown to provide, in a natural way, diffeomorphism-invariant pre-symplectic structures on the space of Riemannian metrics for dimensions $n=4r-2$. The equivariant Pontryagin forms provid
Externí odkaz:
http://arxiv.org/abs/math/0507076
Let $FM,\mathcal{M}_M$ be the bundles of linear frames and Riemannian metrics of a manifold $M$, respectively. The existence of a unique $\mathrm{Diff}M$-invariant connection form on $J^1\mathcal{M}_M\times_MFM\to J^1\mathcal{M}_M$, which is Riemanni
Externí odkaz:
http://arxiv.org/abs/math/0507075