Zobrazeno 1 - 10
of 18
pro vyhledávání: '"Masoud Sabzevari"'
Autor:
Masoud Sabzevari
Publikováno v:
پژوهشهای ریاضی, Vol 5, Iss 2, Pp 151-156 (2019)
Introduction In this paper and by employing some certain techniques and results arisen in the theory of Tanaka, we provide a short proof for the maximum conjecture on the rigidity of Beloshapka's models of the specific CR dimension one and of length
Externí odkaz:
https://doaj.org/article/8e3bfe91bd854de09a891c9ab464c602
Publikováno v:
The Journal of Geometric Analysis. 33
Autor:
Masoud Sabzevari
Publikováno v:
The Journal of Geometric Analysis. 31:7900-7946
Applying the equivariant moving frames method, we construct a convergent normal form for real-analytic 5-dimensional totally nondegenerate submanifolds of $${\mathbb {C}}^4$$ . We develop this construction by applying further normalizations, the poss
Autor:
Masoud Sabzevari, Andrea Spiro
Publikováno v:
Mathematische Zeitschrift. 296:185-210
A CR manifold $M$, with CR distribution $\mathcal D^{10}\subset T^\mathbb C M$, is called {\it totally nondegenerate of depth $\mu$} if: (a) the complex tangent space $T^\mathbb C M$ is generated by all complex vector fields that might be determined
Autor:
Masoud Sabzevari
Publikováno v:
Annali di Matematica Pura ed Applicata (1923 -). 198:1121-1163
Applying Elie Cartan’s classical method, we show that the biholomorphic equivalence problem to a totally nondegenerate Beloshapka’s model of CR dimension one and codimension $$k> 1$$ , whence of real dimension $$2+k$$ , is reducible to some absol
Autor:
Masoud Sabzevari
Publikováno v:
Forum Mathematicum. 30:1599-1608
We verify the maximum conjecture on the rigidity of totally nondegenerate model CR manifolds in the following two cases: (i) for all models of CR dimension one (ii) for the so-called full-models, namely those in which their associated symbol algebras
Autor:
Joel Merker, Masoud Sabzevari
Publikováno v:
The Journal of Geometric Analysis. 26:3194-3251
We reduce to various absolute parallelisms, namely to certain $$\{e\}$$ -structures on manifolds of dimensions 7, 6, 5, the biholomorphic equivalence problem or the intrinsic CR equivalence problem for 5-dimensional CR-generic submanifolds $$M^5 \sub
Publikováno v:
Electronic Research Announcements in Mathematical Sciences. 21:153-166
On a real analytic $5$-dimensional CR-generic submanifold $M^5 \subset \mathbb{C}^4$ of codimension $3$ hence of CR dimension $1$, which enjoys the generically satisfied nondegeneracy condition \begin{align*} {\bf 5} &= \text{rank}_\mathbb{C} \big( T
Autor:
Masoud Sabzevari
It is shown that two Levi-Tanaka and infinitesimal CR automorphism algebras, associated with a totally nondegenerate model of CR dimension one are isomorphic. As a result, the model surfaces are maximally homogeneous and standard. This gives an affir
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5f0acf9e5e077bb5f229b564bf917270
http://arxiv.org/abs/1610.08764
http://arxiv.org/abs/1610.08764
Publikováno v:
Filomat
Filomat, University of Nis, 2016, 30 (6), pp.1387-1411. ⟨10.2298/fil1606387s⟩
Filomat, University of Nis, 2016, 30 (6), pp.1387-1411. ⟨10.2298/fil1606387s⟩
We consider the significant class of homogeneous CR manifolds represented by some weighted homogeneous polynomials and we derive some plain and useful features which enable us to set up a fast effective algorithm to compute homogeneous components of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0ee426efd7505b9a9c1e3244d8f8d01f
https://hal-universite-paris-saclay.archives-ouvertes.fr/hal-03286255
https://hal-universite-paris-saclay.archives-ouvertes.fr/hal-03286255