Zobrazeno 1 - 10
of 14
pro vyhledávání: '"Masoome Zahiri"'
Autor:
Masoome Zahiri, Saeide Zahiri
Publikováno v:
Journal of Mahani Mathematical Research, Vol 12, Iss 2, Pp 19-27 (2023)
Let $R$ be a ring with an endomorphism $\alpha$. A ring $R$ is a skew power series McCoy ring if whenever any non-zero power series $f(x)=\sum_{i=0}^{\infty}a_ix^i,g(x)=\sum_{j=0}^{\infty}b_jx^j\in R[[x;\alpha]]$ satisfy $f(x)g(x)=0$, the
Externí odkaz:
https://doaj.org/article/834f66c8996147c6a351bf837e3072aa
Publikováno v:
Rendiconti del Circolo Matematico di Palermo Series 2.
Publikováno v:
Journal of Algebra and Its Applications.
A module [Formula: see text] is said to be extending (Goldie extending) if for each submodule [Formula: see text] there exists a direct summand [Formula: see text] of [Formula: see text] such that [Formula: see text] is essential in [Formula: see tex
Publikováno v:
Communications in Algebra. 49:1553-1559
A module M is said to be generalized extending if for every submodule N≤M there exists a direct summand D of M containing N such that D/N is a singular module. In this note we prove that a ring R i...
Publikováno v:
Bulletin of the Malaysian Mathematical Sciences Society. 44:1079-1092
The aim of this article is to determine entirely the Jordan automorphisms of generalized matrix rings of Morita contexts. Necessary and sufficient conditions are obtained for an $$\mathcal {R}$$ -linear map on a general Morita context to be a Jordan
Publikováno v:
Communications in Algebra. 47:4061-4065
A ring R with an endomorphism σ is called σ-skew McCoy, if for any zero-divisor f(x) in the skew polynomial ring R[x; σ], there exists a nonzero element c∈R with f(x)c = 0. In this note, we show that there exists a ring R and an endomorphism σ
Publikováno v:
Communications in Algebra. 47:1464-1477
Let SMR be an (S, R)-bimodule of the rings R and S. We determine the associated primes of a formal triangular matrix ring T=(R0MS). Indeed, we show that Ass(TT)={(Ass((R⊕M)R)0MS)}∪{(R0MAss(lS(M)))}.We then obtain necessary and sufficient conditio
Publikováno v:
Studia Scientiarum Mathematicarum Hungarica. 54:82-96
In this paper we study rings R with the property that every finitely generated ideal of R consisting entirely of zero divisors has a nonzero annihilator. The class of commutative rings with this property is quite large; for example, noetherian rings,
Publikováno v:
Taiwanese J. Math. 23, no. 1 (2019), 63-85
Given a ring $R$, a strictly totally ordered monoid $(S,\preceq)$ and a monoid homomorphism $\omega \colon S \to \operatorname{End}(R)$, one can construct the skew generalized power series ring $R[[S,\omega,\preceq]]$, consisting all of the functions
Publikováno v:
Journal of the Korean Mathematical Society. 53:381-401
According to Jacobson (31), a right ideal is bounded if it con- tains a non-zero ideal, and Faith (15) called a ring strongly right bounded if every non-zero right ideal is bounded. From (30), a ring is strongly right AB if every non-zero right annih