Zobrazeno 1 - 10
of 75
pro vyhledávání: '"Maslyuchenko, V."'
Autor:
Maslyuchenko, V. K., Mykhaylyuk, V. V.
Publikováno v:
Mat. Bull. Shevchenko Scien. Soc. (2004), 77-84
It is obtained necessary and sufficient conditions of dependence on $\aleph$ coordinates for functions of several variables, each of which is a product of metrizable factors. The set of discontinuity points of such functions is characterized in the c
Externí odkaz:
http://arxiv.org/abs/1512.08606
Autor:
Maslyuchenko, V. K., Mykhaylyuk, V. V.
Publikováno v:
Ukr. Mat. Zhurn., 52, N 6 (2000), 740-747
It is shown that a set in product of $n$ metrizable spaces is the discontinuity points set of some separately continuous function if and only if this set can be represented as the union of a sequence of $F_{\sigma}$-sets which are locally projectivel
Externí odkaz:
http://arxiv.org/abs/1512.08320
Autor:
Maslyuchenko, V. K., Mykhaylyuk, V. V.
It is proved that a differentiable with respect to each variable function $f:\mathbb R^2\to\mathbb R$ is a solution of the equation $ \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y}=0$ if and only if there exists a function $\varphi:\ma
Externí odkaz:
http://arxiv.org/abs/1512.07759
Autor:
Maslyuchenko, V. K.1, Mel'nyk, V. S.1
Publikováno v:
Ukrainian Mathematical Journal. Oct2018, Vol. 70 Issue 5, p773-785. 13p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Voloshyn, H.1, Maslyuchenko, V.2
Publikováno v:
Ukrainian Mathematical Journal. Jul2016, Vol. 68 Issue 2, p171-178. 8p.
Publikováno v:
Ukrainian Mathematical Journal. Nov2015, Vol. 67 Issue 6, p881-890. 10p.
Autor:
Maslyuchenko, V.1, Nesterenko, V.1
Publikováno v:
Ukrainian Mathematical Journal. Dec2010, Vol. 62 Issue 6, p916-927. 12p.
Publikováno v:
Ukrainian Mathematical Journal. Nov2008, Vol. 60 Issue 11, p1803-1812. 10p.
Autor:
Karlova, O. O.1, Maslyuchenko, V. K.1
Publikováno v:
Ukrainian Mathematical Journal. Dec2007, Vol. 59 Issue 12, p1840-1849. 10p.