Zobrazeno 1 - 10
of 117
pro vyhledávání: '"Maskit, Bernard"'
Autor:
Hidalgo, Ruben A., Maskit, Bernard
Publikováno v:
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 358, Number 11, November 2006, Pages 4765-4792
The goal of this paper is to describe a theoretical construction of an infinite collection of non-classical Schottky groups. We first show that there are infinitely many non-classical noded Schottky groups on the boundary of Schottky space, and we sh
Externí odkaz:
http://arxiv.org/abs/1801.03414
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Rice, Timothy, Hassan, Yonis, Vickneswaramoorthy, Arthi, Dalal, Natashaa, Peral, Michael, Livshin, Anton, Maskit, Bernard, Bucci, Wilma, Hoffman, Leon
Publikováno v:
Psychodynamic Psychiatry; Sep2024, Vol. 52 Issue 3, p358-369, 12p
Each free homotopy class of directed closed curves on a surface with boundary can be described by a cyclic reduced word in the generators of the fundamental group and their inverses. The word length is the number of letters of the cyclic word. If the
Externí odkaz:
http://arxiv.org/abs/1305.5912
Autor:
LeBrun, Claude, Maskit, Bernard
We completely determine, up to homeomorphism, which simply connected compact oriented 4-manifolds admit scalar-flat, anti-self-dual Riemannian metrics. The key new ingredient is a proof that the connected sum of five reverse-oriented complex projecti
Externí odkaz:
http://arxiv.org/abs/0711.1668
Autor:
Hidalgo, Rubén, Maskit, Bernard
Publikováno v:
Transactions of the American Mathematical Society, 2006 Nov 01. 358(11), 4765-4792.
Externí odkaz:
https://www.jstor.org/stable/3845400
Autor:
Maskit, Bernard
Publikováno v:
Proceedings of the American Mathematical Society, 1999 Dec 01. 127(12), 3643-3652.
Externí odkaz:
https://www.jstor.org/stable/119362
In this paper, we assume that $G$ is a finitely generated torsion free non-elementary Kleinian group with $\Omega(G)$ nonempty. We show that the maximal number of elements of $G$ that can be pinched is precisely the maximal number of rank 1 parabolic
Externí odkaz:
http://arxiv.org/abs/math/9201299
Autor:
BASMAJIAN, ARA, MASKIT, BERNARD
Publikováno v:
Transactions of the American Mathematical Society, 2012 Sep 01. 364(9), 5015-5033.
Externí odkaz:
http://dx.doi.org/10.1090/S0002-9947-2012-05639-X