Zobrazeno 1 - 10
of 241
pro vyhledávání: '"Masini, Andrea"'
We extend to natural deduction the approach of Linear Nested Sequents and of 2-sequents. Formulas are decorated with a spatial coordinate, which allows a formulation of formal systems in the original spirit of natural deduction -- only one introducti
Externí odkaz:
http://arxiv.org/abs/2007.11875
In this work a novel ships dataset is proposed consisting of more than 56k images of marine vessels collected by means of web-scraping and including 12 ship categories. A YOLOv3 single-stage detector based on Keras API is built on top of this dataset
Externí odkaz:
http://arxiv.org/abs/2003.00800
Extending and generalizing the approach of 2-sequents (Masini, 1992), we present sequent calculi for the classical modal logics in the K, D, T, S4 spectrum. The systems are presented in a uniform way-different logics are obtained by tuning a single p
Externí odkaz:
http://arxiv.org/abs/2001.02029
Autor:
Baratella, Stefano, Masini, Andrea
We introduce a two-dimensional metric (interval) temporal logic whose internal and external time flows are dense linear orderings. We provide a suitable semantics and a sequent calculus with axioms for equality and extralogical axioms. Then we prove
Externí odkaz:
http://arxiv.org/abs/1903.05894
Autor:
Martini, Simone1 simone.martini@unibo.it, Masini, Andrea2 andrea.masini@univr.it, Zorzi, Margherita2 margherita.zorzi@univr.it
Publikováno v:
Bulletin of the Section of Logic. Dec2023, Vol. 52 Issue 4, p459-495. 37p.
Contrary to the classical case, the relation between quantum programming languages and quantum Turing Machines (QTM) has not being fully investigated. In particular, there are features of QTMs that have not been exploited, a notable example being the
Externí odkaz:
http://arxiv.org/abs/1703.07748
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In International Journal of Production Economics December 2021 242
Publikováno v:
In European Journal of Operational Research 1 September 2021 293(2):481-494
We propose a definition of quantum computable functions as mappings between superpositions of natural numbers to probability distributions of natural numbers. Each function is obtained as a limit of an infinite computation of a quantum Turing machine
Externí odkaz:
http://arxiv.org/abs/1504.02817