Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Masih Haseli"'
Autor:
Masih Haseli, Jorge Cortes
Publikováno v:
IEEE Control Systems Letters. 7:649-654
Extended Dynamic Mode Decomposition (EDMD) is a popular data-driven method to approximate the action of the Koopman operator on a linear function space spanned by a dictionary of functions. The accuracy of EDMD model critically depends on the quality
Autor:
Jorge E. Cortes, Masih Haseli
Publikováno v:
IEEE Transactions on Automatic Control. 67:3442-3457
This paper develops data-driven methods to identify eigenfunctions of the Koopman operator associated to a dynamical system and subspaces that are invariant under the operator. We build on Extended Dynamic Mode Decomposition (EDMD), a data-driven met
Autor:
Jorge E. Cortes, Masih Haseli
Publikováno v:
IEEE Transactions on Control of Network Systems. 8:1833-1845
We present a parallel data-driven strategy to identify finite-dimensional functional spaces invariant under the Koopman operator associated to an unknown dynamical system. We build on the Symmetric Subspace Decomposition (SSD) algorithm, a centralize
Autor:
Masih Haseli, Jorge E. Cortes
Publikováno v:
ACC
This paper studies the problem of identifying finite-dimensional functional spaces that are close (within a predefined level of accuracy) to being invariant under the application of the Koopman operator. Given a dictionary of functions spanning a fin
Autor:
Masih Haseli, Jorge Cortés
This paper tackles the data-driven approximation of unknown dynamical systems using Koopman-operator methods. Given a dictionary of functions, these methods approximate the projection of the action of the operator on the finite-dimensional subspace s
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b484f78e4d8985c7eb80d013ffffaa0c
Autor:
Jorge E. Cortes, Masih Haseli
Publikováno v:
ACC
This paper presents a parallel data-driven method to identify finite-dimensional subspaces that are invariant under the Koopman operator describing a dynamical system. Our approach builds on Symmetric Subspace Decomposition (SSD), which is a centrali
Autor:
Masih Haseli, Jorge E. Cortes
Publikováno v:
CDC
This paper presents a data-driven approach to identify finite-dimensional Koopman invariant subspaces and eigenfunctions of the Koopman operator. Given a dictionary of functions and a collection of data snapshots of the dynamical system, we rely on t
Autor:
Masih Haseli, Jorge E. Cortes
Publikováno v:
Scopus-Elsevier
ACC
ACC
This paper presents a data-driven method to find a finite-dimensional approximation for the Koopman operator using noisy data. The proposed method is a modification of Extended Dynamic Mode Decomposition which finds an approximation for the projectio
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::36d811a8c063573f6340e79fe7c804fd
http://www.scopus.com/inward/record.url?eid=2-s2.0-85072270555&partnerID=MN8TOARS
http://www.scopus.com/inward/record.url?eid=2-s2.0-85072270555&partnerID=MN8TOARS