Zobrazeno 1 - 10
of 58
pro vyhledávání: '"Masbaum, Gregor"'
Autor:
Gilmer, Patrick M., Masbaum, Gregor
Let Sigma be a closed oriented surface of genus g. We show that the Kauffman bracket skein module of Sigma x S^1 over the field of rational functions in A has dimension at least 2^{2g+1}+2g-1.
Comment: 15 pages, 1 figure, to appear in Proc. A.M.
Comment: 15 pages, 1 figure, to appear in Proc. A.M.
Externí odkaz:
http://arxiv.org/abs/1804.05746
Autor:
Masbaum, Gregor
We use elementary skein theory to prove a version of a result of Stylianakis who showed that under mild restrictions on m and n, the normal closure of the m-th power of a half-twist has infinite index in the mapping class group of a sphere with 2n pu
Externí odkaz:
http://arxiv.org/abs/1608.08449
Autor:
Gilmer, Patrick M., Masbaum, Gregor
Publikováno v:
Invent. math. (2017) 210:501--530
For p>3 a prime, and g>2 an integer, we use Topological Quantum Field Theory (TQFT) to study a family of p-1 highest weight modules L_p(lambda) for the symplectic group Sp(2g,K) where K is an algebraically closed field of characteristic p. This permi
Externí odkaz:
http://arxiv.org/abs/1606.09532
Autor:
Gilmer, Patrick M., Masbaum, Gregor
Publikováno v:
J. Pure Appl. Algebra 217 (2013), no. 1, 82--86
We compare the dimensions of the irreducible Sp(2g,K)-modules over a field K of characteristic p constructed by Gow with the dimensions of the irreducible Sp(2g,F_p)-modules that appear in the first approximation to representations of mapping class g
Externí odkaz:
http://arxiv.org/abs/1111.0240
Autor:
Gilmer, Patrick M., Masbaum, Gregor
Publikováno v:
Quantum Topology, 5, Issue 2, 2014, pp. 225-258
We find decomposition series of length at most two for modular representations in positive characteristic of mapping class groups of surfaces induced by an integral version of the Witten-Reshetikhin-Turaev SO(3)-TQFT at the p-th root of unity, where
Externí odkaz:
http://arxiv.org/abs/1110.5666
Autor:
Masbaum, Gregor, Reid, Alan W.
Publikováno v:
Geom. Topol. 16 (2012) 1393-1411
Let $\Gamma_g$ denote the orientation-preserving Mapping Class Group of the genus $g\geq 1$ closed orientable surface. In this paper we show that for fixed $g$, every finite group occurs as a quotient of a finite index subgroup of $\Gamma_g$.
Co
Co
Externí odkaz:
http://arxiv.org/abs/1106.4261
Autor:
Gilmer, Patrick M., Masbaum, Gregor
Publikováno v:
Forum Math. 25 (2013), no. 5, 1067-1106
Given a mapping class f of an oriented surface Sigma and a lagrangian lambda in the first homology of Sigma, we define an integer n_{lambda}(f). We use n_{lambda}(f) (mod 4) to describe a universal central extension of the mapping class group of Sigm
Externí odkaz:
http://arxiv.org/abs/0912.4706
Autor:
Loebl, Martin, Masbaum, Gregor
We prove optimality of the Arf invariant formula for the generating function of even subgraphs, or, equivalently, the Ising partition function, of a graph.
Comment: Advances in Mathematics, 2010
Comment: Advances in Mathematics, 2010
Externí odkaz:
http://arxiv.org/abs/0908.2925
Autor:
Gilmer, Patrick M., Masbaum, Gregor
Publikováno v:
Pacific Journal of Mathematics, vol 252 No 1 (2011), 93--112
We give new explicit formulas for the representations of the mapping class group of a genus one surface with one boundary component which arise from Integral TQFT. Our formulas allow one to compute the h-adic expansion of the TQFT-matrix associated t
Externí odkaz:
http://arxiv.org/abs/0908.2796
Consider the problem of determining whether there exists a spanning hypertree in a given k-uniform hypergraph. This problem is trivially in P for k=2, and is NP-complete for k>= 4, whereas for k=3, there exists a polynomial-time algorithm based on Lo
Externí odkaz:
http://arxiv.org/abs/0812.3593