Zobrazeno 1 - 10
of 116
pro vyhledávání: '"Masahiro Yukawa"'
Autor:
Masa-Aki Takizawa, Masahiro Yukawa
Publikováno v:
IEEE Access, Vol 9, Pp 24026-24040 (2021)
We propose a novel online algorithm for efficient nonlinear estimation. Target nonlinear functions are approximated with “unfixed”Gaussians of which the parameters are regarded as (a part of) variables. The Gaussian parameters (scales and centers
Externí odkaz:
https://doaj.org/article/45ff30ffe6e640b8b9642cfcb60ca9ce
Autor:
Masahiro Yukawa, Isao Yamada
Publikováno v:
EURASIP Journal on Advances in Signal Processing, Vol 2009 (2009)
We present a unified analytic tool named variable-metric adaptive projected subgradient method (V-APSM) that encompasses the important family of adaptive variable-metric projection algorithms. The family includes the transform-domain adaptive filter,
Externí odkaz:
https://doaj.org/article/0bb67a625fee4972aac287a3e1e66132
Publikováno v:
2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC).
Autor:
Masahiro Yukawa, Kwangjin Jeong
Publikováno v:
IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences. :927-939
Publikováno v:
2022 30th European Signal Processing Conference (EUSIPCO).
Publikováno v:
2022 30th European Signal Processing Conference (EUSIPCO).
Autor:
Tatsuya Koyakumaru, Masahiro Yukawa
Publikováno v:
2022 30th European Signal Processing Conference (EUSIPCO).
Autor:
Kyohei Suzuki, Masahiro Yukawa
Publikováno v:
2022 IEEE 32nd International Workshop on Machine Learning for Signal Processing (MLSP).
Autor:
Kyohei Suzuki, Masahiro Yukawa
Publikováno v:
2022 IEEE 32nd International Workshop on Machine Learning for Signal Processing (MLSP).
Autor:
Kyohei Suzuki, Masahiro Yukawa
Publikováno v:
IEEE Transactions on Signal Processing. 69:669-681
We propose a robust approach to recovering jointly sparse signals in the presence of outliers. The robust recovery task is cast as a convex optimization problem involving a minimax concave loss function (which is weakly convex) and a strongly convex