Zobrazeno 1 - 10
of 386
pro vyhledávání: '"Masafumi HAGIWARA"'
Publikováno v:
Scientific Reports, Vol 13, Iss 1, Pp 1-13 (2023)
Abstract Fully automated techniques using convolutional neural networks for cephalometric landmark detection have recently advanced. However, all existing studies have adopted X-rays. The problem of direct exposure of patients to X-ray radiation rema
Externí odkaz:
https://doaj.org/article/d94e0e0b9cfe4a7db3696bca812cb8af
Autor:
Hiroshi Honda, Masafumi Hagiwara
Publikováno v:
IEEE Access, Vol 9, Pp 121859-121870 (2021)
The authors propose analogical reasoning systems based on first-order predicate logic using deep learning. The proposed systems consist of a model combining recursive neural networks and Word2Vec. When unknown data is input in this trained model, sim
Externí odkaz:
https://doaj.org/article/b7f1346f2301432688a96b6ebcdecf33
Autor:
Hiroshi Honda, Masafumi Hagiwara
Publikováno v:
IEEE Access, Vol 7, Pp 152368-152378 (2019)
The authors propose methods to learn symbolic processing with deep learning and to build question answering systems by means of learned models. Symbolic processing, performed by the Prolog processing systems which execute unification, resolution, and
Externí odkaz:
https://doaj.org/article/1b1a77855df344e2945d81056d4e10f6
Publikováno v:
IEEE Access, Vol 7, Pp 105851-105862 (2019)
This paper proposes a quality recovery network (QRNet) that recovers the image quality from distorted images and improves the classification accuracy for image classification using these recovered images as the classifier inputs, which are optimized
Externí odkaz:
https://doaj.org/article/90d4eef371b240c6a0e02e0bb635d3b1
Autor:
Soma KOYANAGI, Masafumi HAGIWARA
Publikováno v:
Transactions of Japan Society of Kansei Engineering. 22:171-180
Autor:
Masaya Yumoto, Masafumi Hagiwara
Publikováno v:
Neural Network World. 33:49-66
In this paper, we propose new methods for estimating the relative reliability of prediction and rejection methods for selective classification for spiking neural networks (SNNs). We also optimize and improve the efficiency of the RC curve, which repr
Autor:
Kota SATO, Masafumi HAGIWARA
Publikováno v:
Transactions of Japan Society of Kansei Engineering. 22:197-206
Autor:
Naomu NAGASAWA, Masafumi HAGIWARA
Publikováno v:
Transactions of Japan Society of Kansei Engineering; 2024, Vol. 23 Issue 2, p87-96, 10p
Autor:
Masafumi HAGIWARA
Publikováno v:
Journal of Japan Society for Fuzzy Theory and Intelligent Informatics. 34:89-97
Autor:
Kota SATO, Masafumi HAGIWARA
Publikováno v:
Transactions of Japan Society of Kansei Engineering. 21:57-65