Zobrazeno 1 - 10
of 50
pro vyhledávání: '"Masaaki Eguchi"'
Publikováno v:
Journal of Fourier Analysis and Applications. 12:1-15
We give a sampling formula using the Radon transform along a maximal geodesic subspace of the Riemannian symmetric space. For the real hyperbolic space we can get a total sampling formula. To get this formula, we prepare a sampling formula for the sp
Publikováno v:
Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics. 68:55-67
We describe a generalization of the Hardy theorem on the motion group. We prove that for some weight functions νω growing very rapidly and a measurable function f, the finiteness of the Lp-norm of vf and the Lq-norm of ωf implies f=0 (almost every
Publikováno v:
Journal of Fourier Analysis & Applications; Feb2006, Vol. 12 Issue 1, p1-15, 15p
Autor:
Masaaki Eguchi, Hironobu Sakata, H. Koinuma, Seiji Tsuboi, Mitsutaka Matsuse, Masashi Kawasaki
Publikováno v:
Physical Review B. 53:12585-12588
Initial growth of hydrogenated amorphous silicon (a-Si:H) from silane plasma on a cleaved surface of highly oriented pyrolytic graphite (HOPG) has been investigated by means of in situ x-ray photoelectron spectroscopy (XPS) and atomic force microscop
Publikováno v:
Hiroshima Math. J. 36, no. 1 (2006), 125-140
Sampling theorems are one of the basic tools in information theory. The signal function f whose band–region is contained in a certain interval can be reconstructed from their values f ðxkÞ at the sampling points fxkg. We obtain analogues of this
Publikováno v:
Hiroshima Math. J. 32, no. 2 (2002), 337-349
M. G. Cowling and J. F. Price showed a generalization of Hardy’s theorem as follows. If v and w grow very rapidly, then the finiteness of kvf kp and kwf kq implies that f 1⁄4 0, where f denotes the Fourier transform of f . We give an analogue of
Publikováno v:
J. Math. Soc. Japan 51, no. 4 (1999), 955-985
We give the recursion formula of the Harish-Chandra $C$ -function with respect to the highest weight of the representations of $K$ . Using this formula, we get the explicit expressions of the Harish-Chandra $C$ -functions for $Spin(n, 1)$ and $SU(n,1
Publikováno v:
Proc. Japan Acad. Ser. A Math. Sci. 75, no. 7 (1999), 113-114
Publikováno v:
Proc. Japan Acad. Ser. A Math. Sci. 74, no. 10 (1998), 149-151
Autor:
Masaaki Eguchi, Shin Koizumi
Publikováno v:
Proc. Japan Acad. Ser. A Math. Sci. 72, no. 6 (1996), 129-133