Zobrazeno 1 - 10
of 85
pro vyhledávání: '"Maryam M Shanechi"'
Autor:
Omid G Sani, Maryam M Shanechi
Publikováno v:
eLife, Vol 10 (2021)
Investigating how an artificial network of neurons controls a simulated arm suggests that rotational patterns of activity in the motor cortex may rely on sensory feedback from the moving limb.
Externí odkaz:
https://doaj.org/article/e9c32215ff7c4df58dc66c29d0aa3f3d
Autor:
Han-Lin Hsieh, Maryam M Shanechi
Publikováno v:
PLoS Computational Biology, Vol 14, Iss 5, p e1006168 (2018)
Closed-loop neurotechnologies often need to adaptively learn an encoding model that relates the neural activity to the brain state, and is used for brain state decoding. The speed and accuracy of adaptive learning algorithms are critically affected b
Externí odkaz:
https://doaj.org/article/604e538a08684b37b35b8e4501ae3e1a
Publikováno v:
PLoS Computational Biology, Vol 12, Iss 4, p e1004730 (2016)
Much progress has been made in brain-machine interfaces (BMI) using decoders such as Kalman filters and finding their parameters with closed-loop decoder adaptation (CLDA). However, current decoders do not model the spikes directly, and hence may lim
Externí odkaz:
https://doaj.org/article/f640040fab0640f0ad82c15aa1e546aa
Publikováno v:
PLoS Computational Biology, Vol 9, Iss 10, p e1003284 (2013)
Medically-induced coma is a drug-induced state of profound brain inactivation and unconsciousness used to treat refractory intracranial hypertension and to manage treatment-resistant epilepsy. The state of coma is achieved by continually monitoring t
Externí odkaz:
https://doaj.org/article/c87d2825bff44a7e8c5cee37c4eb3026
Autor:
Maryam M Shanechi, Ziv M Williams, Gregory W Wornell, Rollin C Hu, Marissa Powers, Emery N Brown
Publikováno v:
PLoS ONE, Vol 8, Iss 4, p e59049 (2013)
Real-time brain-machine interfaces (BMI) have focused on either estimating the continuous movement trajectory or target intent. However, natural movement often incorporates both. Additionally, BMIs can be modeled as a feedback control system in which
Externí odkaz:
https://doaj.org/article/27e92d5fcfe8485598470685009cf5c9
Autor:
Frederick L. Hitti, Alik S. Widge, Patricio Riva-Posse, Donald A. Malone, Jr., Michael S. Okun, Maryam M. Shanechi, Kelly D. Foote, Sarah H. Lisanby, Elizabeth Ankudowich, Srinivas Chivukula, Edward F. Chang, Aysegul Gunduz, Clement Hamani, Ashley Feinsinger, Cynthia S. Kubu, Winston Chiong, Jennifer A. Chandler, Rafael Carbunaru, Binith Cheeran, Robert S. Raike, Rachel A. Davis, Casey H. Halpern, Nora Vanegas-Arroyave, Dejan Markovic, Sarah K. Bick, Cameron C. McIntyre, R. Mark Richardson, Darin D. Dougherty, Brian H. Kopell, Jennifer A. Sweet, Wayne K. Goodman, Sameer A. Sheth, Nader Pouratian
Publikováno v:
Brain Stimulation, Vol 16, Iss 3, Pp 867-878 (2023)
Objective.Despite advances in the treatment of psychiatric diseases, currently available therapies do not provide sufficient and durable relief for as many as 30–40% of patients. Neuromodulation, including deep brain stimulation (DBS), has emerged
Externí odkaz:
https://doaj.org/article/646a194141a143ab836dbfa7678f5e4a
Autor:
Prasad Shirvalkar, Jordan Prosky, Gregory Chin, Parima Ahmadipour, Omid G. Sani, Maansi Desai, Ashlyn Schmitgen, Heather Dawes, Maryam M. Shanechi, Philip A. Starr, Edward F. Chang
Publikováno v:
Nature Neuroscience.
Publikováno v:
bioRxiv
Neural dynamics can reflect intrinsic dynamics or dynamic inputs, such as sensory inputs or inputs from other regions. To avoid misinterpreting temporally-structured inputs as intrinsic dynamics, dynamical models of neural activity should account for
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2924d482f7ddaf3033b25bbda9279373
https://doi.org/10.1101/2023.03.14.532554
https://doi.org/10.1101/2023.03.14.532554
Publikováno v:
bioRxiv
Inferring complex spatiotemporal dynamics in neural population activity is critical for investigating neural mechanisms and developing neurotechnology. These activity patterns are noisy observations of lower-dimensional latent factors and their nonli
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8f5c98eb786c97da7f05365dc9c79544
https://europepmc.org/articles/PMC10054986/
https://europepmc.org/articles/PMC10054986/
When making decisions, humans can evaluate how likely they are to be correct. If this subjective confidence could be reliably decoded from brain activity, it would be possible to build a brain-computer interface (BCI) that improves decision performan
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::ebe33c1407f005919b2f2eb4ac14db1c
https://doi.org/10.1101/2022.11.01.514790
https://doi.org/10.1101/2022.11.01.514790