Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Marvin Lerousseau"'
Autor:
Caroline Robert, Rui Jiang, Pierre-Antoine Laurent, Roger Sun, Eric Deutsch, Angela Rouyar, Alexandre Carré, Charlotte Robert, Severine Roy, Emilie Routier, Théophraste Henry, Adrien Laville, Anthony Hamaoui, Marvin Lerousseau, Jade Briend-Diop, Kanta Ka, Nawal Temar
Publikováno v:
Journal for ImmunoTherapy of Cancer, Vol 10, Iss 10 (2022)
Purpose While there is still a significant need to identify potential biomarkers that can predict which patients are most likely to respond to immunotherapy treatments, radiomic approaches have shown promising results. The objectives of this study we
Externí odkaz:
https://doaj.org/article/82ca37afdf0e48119a590e43a2a67f39
Autor:
Théo Estienne, Marvin Lerousseau, Maria Vakalopoulou, Emilie Alvarez Andres, Enzo Battistella, Alexandre Carré, Siddhartha Chandra, Stergios Christodoulidis, Mihir Sahasrabudhe, Roger Sun, Charlotte Robert, Hugues Talbot, Nikos Paragios, Eric Deutsch
Publikováno v:
Frontiers in Computational Neuroscience, Vol 14 (2020)
Image registration and segmentation are the two most studied problems in medical image analysis. Deep learning algorithms have recently gained a lot of attention due to their success and state-of-the-art results in variety of problems and communities
Externí odkaz:
https://doaj.org/article/5c3915bdf829480aa15d8fa0eb924aa6
Autor:
Roger Sun, Marvin Lerousseau, Jade Briend-Diop, Emilie Routier, Severine Roy, Théophraste Henry, Kanta Ka, Rui Jiang, Nawal Temar, Alexandre Carré, Adrien Laville, Anthony Hamaoui, Pierre-Antoine Laurent, Angela Rouyar, Charlotte Robert, Caroline Robert, Eric Deutsch
Publikováno v:
Journal for immunotherapy of cancer. 10(10)
PurposeWhile there is still a significant need to identify potential biomarkers that can predict which patients are most likely to respond to immunotherapy treatments, radiomic approaches have shown promising results. The objectives of this study wer
Autor:
Théophraste Henry, Roger Sun, Marvin Lerousseau, Théo Estienne, Charlotte Robert, Benjamin Besse, Caroline Robert, Nikos Paragios, Eric Deutsch
After promising results for localized cancer disease, radiomics analysis has been applied to the metastatic setting, sidestepping the potential intertumoral intrapatient heterogeneity captured by radiomics features. Our aim was to evaluate if radiomi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::07096c2ce235f2916f2dffa652d00e8a
https://doi.org/10.21203/rs.3.rs-1775619/v1
https://doi.org/10.21203/rs.3.rs-1775619/v1
Publikováno v:
Current Opinion in Oncology. 33:175-183
Purpose of review Pathology is the cornerstone of cancer care. Pathomics, which represents the use of artificial intelligence in digital pathology, is an emerging and promising field that will revolutionize medical and surgical pathology in the comin
Autor:
B. Biron, S. Corbin, Théo Estienne, Théophraste Henry, F. Auville, C. Veres, Frédéric Dhermain, Eric Deutsch, C. Robert, A. Gasnier, N. Paragios, E. Alvarez Andres, A. Vatonne, Lucas Fidon, Marvin Lerousseau
Publikováno v:
Radiotherapy and Oncology. 161:S520-S522
Autor:
Amaury Leroy, Marvin Lerousseau, Théophraste Henry, Alexandre Cafaro, Nikos Paragios, Vincent Grégoire, Eric Deutsch
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783031164453
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::266bf423b7bc5a232cec48f3c91677f7
https://doi.org/10.1007/978-3-031-16446-0_15
https://doi.org/10.1007/978-3-031-16446-0_15
Autor:
Marvin Lerousseau, Théophraste Henry, Enzo Battistella, Amaury Leroy, Marion Classe, Maria Vakalopoulou, Théo Estienne, Jean-Yves Scoazec, Nikos Paragios, Roger Sun, Eric Deutsch
Publikováno v:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021
Medical Image Computing and Computer Assisted Intervention
Medical Image Computing and Computer Assisted Intervention, Sep 2021, Stansbroug, France. pp.248-256, ⟨10.1007/978-3-030-87237-3_24⟩
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 ISBN: 9783030872366
MICCAI (8)
Medical Image Computing and Computer Assisted Intervention
Medical Image Computing and Computer Assisted Intervention, Sep 2021, Stansbroug, France. pp.248-256, ⟨10.1007/978-3-030-87237-3_24⟩
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 ISBN: 9783030872366
MICCAI (8)
The vast majority of semantic segmentation approaches rely on pixel-level annotations that are tedious and time consuming to obtain and suffer from significant inter and intra-expert variability. To address these issues, recent approaches have levera
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9ffb99da2af825c7ca41875aae598660
http://arxiv.org/abs/2105.04269
http://arxiv.org/abs/2105.04269
Autor:
Théophraste Henry, Enzo Battistella, Marie-Pierre Revel, Maria Vakalopoulou, Marvin Lerousseau, Amaury Leroy, Nikos Paragios, Guillaume Chassagnon, Théo Estienne, Stergios Christodoulidis, Eric Deutsch
Publikováno v:
Domain Adaptation and Representation Transfer, and Affordable Healthcare and AI for Resource Diverse Global Health
DART in MICCAI 2021, the 24th International Conference on Medical Image Computing and Computer Assisted Intervention
DART in MICCAI 2021, the 24th International Conference on Medical Image Computing and Computer Assisted Intervention, Sep 2021, Strasbourg, France. pp.112-122, ⟨10.1007/978-3-030-87722-4_11⟩
Domain Adaptation and Representation Transfer, and Affordable Healthcare and AI for Resource Diverse Global Health ISBN: 9783030877217
DART/FAIR@MICCAI
DART in MICCAI 2021, the 24th International Conference on Medical Image Computing and Computer Assisted Intervention
DART in MICCAI 2021, the 24th International Conference on Medical Image Computing and Computer Assisted Intervention, Sep 2021, Strasbourg, France. pp.112-122, ⟨10.1007/978-3-030-87722-4_11⟩
Domain Adaptation and Representation Transfer, and Affordable Healthcare and AI for Resource Diverse Global Health ISBN: 9783030877217
DART/FAIR@MICCAI
Explainability of deep neural networks is one of the most challenging and interesting problems in the field. In this study, we investigate the topic focusing on the interpretability of deep learning-based registration methods. In particular, with the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6da65aa35f633dfb33eac7b9bcb348d0
https://hal.science/hal-03524105
https://hal.science/hal-03524105
Autor:
Théo Estienne, Charlotte Robert, Alexandre Carré, Eric Deutsch, Nikos Paragios, Théophraste Henry, Marvin Lerousseau
Publikováno v:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries ISBN: 9783030720834
BrainLes@MICCAI (1)
BrainLes@MICCAI (1)
Brain tumor segmentation is a critical task for patient’s disease management. In order to automate and standardize this task, we trained multiple U-net like neural networks, mainly with deep supervision and stochastic weight averaging, on the Multi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::2cd8291af846fac553437b31b0d65206
https://doi.org/10.1007/978-3-030-72084-1_30
https://doi.org/10.1007/978-3-030-72084-1_30