Zobrazeno 1 - 10
of 31
pro vyhledávání: '"Martiny, André"'
Autor:
Abrahamsen, Trond A., Aliaga, Ramón J., Lima, Vegard, Martiny, André, Perreau, Yoël, Prochazka, Antonín, Veeorg, Triinu
We introduce relative versions of Daugavet-points and the Daugavet property, where the Daugavet-behavior is localized inside of some supporting slice. These points present striking similarities with Daugavet-points, but lie strictly between the notio
Externí odkaz:
http://arxiv.org/abs/2306.05536
Autor:
Abrahamsen, Trond A., Aliaga, Ramón J., Lima, Vegard, Martiny, André, Perreau, Yoël, Prochazka, Antonín, Veeorg, Triinu
Publikováno v:
J. London Math. Soc. 109 (2024), e12913
We show that the Lipschitz-free space with the Radon--Nikod\'{y}m property and a Daugavet point recently constructed by Veeorg is in fact a dual space isomorphic to $\ell_1$. Furthermore, we answer an open problem from the literature by showing that
Externí odkaz:
http://arxiv.org/abs/2303.00511
We study Daugavet- and $\Delta$-points in Banach spaces. A norm one element $x$ is a Daugavet-point (respectively a $\Delta$-point) if in every slice of the unit ball (respectively in every slice of the unit ball containing $x$) you can find another
Externí odkaz:
http://arxiv.org/abs/2203.14528
We study delta-points in Banach spaces $h_{\mathcal{A},p}$ generated by adequate families $\mathcal A$ where $1 \le p < \infty$. In the case the familiy $\mathcal A$ is regular and $p=1,$ these spaces are known as combinatorial Banach spaces. When $p
Externí odkaz:
http://arxiv.org/abs/2012.00406
We study the existence of Daugavet- and delta-points in the unit sphere of Banach spaces with a $1$-unconditional basis. A norm one element $x$ in a Banach space is a Daugavet-point (resp. delta-point) if every element in the unit ball (resp. $x$ its
Externí odkaz:
http://arxiv.org/abs/2007.04946
Autor:
Martiny, André
We show that every M\"untz space can be written as a direct sum of Banach spaces X and Y , where Y is almost isometric to a subspace of c and X is finite dimensional. We apply this to show that no M\"untz space is locally octahedral or almost square.
Externí odkaz:
http://arxiv.org/abs/1811.02011
We show that M\"{u}ntz spaces, as subspaces of $C[0,1]$, contain asymptotically isometric copies of $c_0$ and that their dual spaces are octahedral.
Comment: 7 pages
Comment: 7 pages
Externí odkaz:
http://arxiv.org/abs/1702.06367
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Demonstratio Mathematica, Vol 50, Iss 1, Pp 239-244 (2017)
We show that Müntz spaces, as subspaces of C[0, 1], contain asymptotically isometric copies of c0 and that their dual spaces are octahedral.
Externí odkaz:
https://doaj.org/article/50078194b94c474d9d78880639e8a3ae
Publikováno v:
Illinois Journal of Mathematics; Sep2022, Vol. 66 Issue 3, p421-434, 14p