Zobrazeno 1 - 10
of 35
pro vyhledávání: '"Martins, Thiago G."'
In this paper, we introduce a new concept for constructing prior distributions. We exploit the natural nested structure inherent to many model components, which defines the model component to be a flexible extension of a base model. Proper priors are
Externí odkaz:
http://arxiv.org/abs/1403.4630
Prior sensitivity examination plays an important role in applied Bayesian analyses. This is especially true for Bayesian hierarchical models, where interpretability of the parameters within deeper layers in the hierarchy becomes challenging. In addit
Externí odkaz:
http://arxiv.org/abs/1312.4797
Autor:
Martins, Thiago G., Rue, Håvard
This work extends the Integrated Nested Laplace Approximation (INLA) method to latent models outside the scope of latent Gaussian models, where independent components of the latent field can have a near-Gaussian distribution. The proposed methodology
Externí odkaz:
http://arxiv.org/abs/1210.1434
The INLA approach for approximate Bayesian inference for latent Gaussian models has been shown to give fast and accurate estimates of posterior marginals and also to be a valuable tool in practice via the R-package R-INLA. In this paper we formalize
Externí odkaz:
http://arxiv.org/abs/1210.0333
Publikováno v:
Statistical Science, 2017 Feb 01. 32(1), 1-28.
Externí odkaz:
https://www.jstor.org/stable/26408114
Publikováno v:
Statistical Science, 2017 Feb 01. 32(1), 44-46.
Externí odkaz:
https://www.jstor.org/stable/26408119
Autor:
MARTINS, THIAGO G., RUE, HÅVARD
Publikováno v:
Scandinavian Journal of Statistics, 2014 Dec 01. 41(4), 893-912.
Externí odkaz:
http://www.jstor.org/stable/24586812
Publikováno v:
In Computational Statistics and Data Analysis November 2013 67:68-83
Publikováno v:
In Computational Statistics and Data Analysis April 2013 60:146-156
Autor:
Soares, Sofia R., Cavalcanti, Júlia R. G. B., Silva, Alexandre L. C. L. R., Martins, Thiago G., Souza, Giacomo F., Neto, Jim U. C.
Publikováno v:
Romanian Neurosurgery; Mar2023, Vol. 37 Issue 1, p41-45, 5p